LSUHealthNewOrleans IEALTH SCIENCES CENTER

Stanley S. Scott Cancer Center

McQuirter poster presentation

Human papillomavirus (HPV) infection is linked to most if not all cervical cancer and anal cancer. HPV is also the cause of approximately 33% of head and neck cancers and up to 50% of tonsillar cancers. HPV-16 has been linked to about 60% of all HPV-related cervical cancers, 80% of anal cancers and over 90% of HPV-related oral cancers. Research is ongoing to look at HPV infections in the oral cavity. In particular, HPV-16 is linked to oral cancers which are increased in the HIV+ population (2-4 fold). In addition, HPV-32, which has been associated with the presence of oral warts, has increased by 3 fold in the HIV+ population. Data from the Hagensee laboratory has shown that over 50% of the oral warts contain HPV-32 in them. In the HIV+ population there is no decrease in these despite HAART (Highly active anti-retroviral therapy). It's unclear why the HIV+ population on HAART continue to have steady rates of HPV-16 & HPV-32 infections. The goal of this study was to examine the rates of HPV-16 and 32 in HIV+ individuals over the past 10+ years.

Hypothesis

Rate of HPV 16 and HPV 32 in oral cavity of HIV+ individuals will remain the same over time with the advent of HAART (Highly active anti-retroviral therapy).

Methodology

Study #1 – cross sectional study of over 400 individual HIV+ patients from 2002-2005 examining the rates of oral HPV infection

Six samples were collected from recruited subjects from the mouth including: lips, gums, tongue, tonsil, cheek, under the tongue. A saliva and gargle sample was also obtained. These samples were tested for HPV-16 by the Reverse Line Blot PCR Assay and for HPV-32 by line blot, dot blot and PCR assays. All sites were combined in this analysis.

Study #2 – 1st visit of longitudinal study of HIV+ patients from 2008-2009 (18 month study at 3 month intervals) examining the duration of oral HPV infection

Six samples were collected from recruited subjects from the mouth including: lips, gums, tongue, tonsil, cheek, under the tongue. A saliva and gargle sample was also obtained. These samples were tested for HPV-16 and HPV-32 by a type specific PCR assays. All sites were combined in this analysis.

Study #3 – 1st visit of study from 2013-2014 examining the oral microbiome and its relationship to oral HPV infection

A gargle sample was collected from recruited subjects. DNA extraction was performed using the Qiagen DNA blood mini kit. HPV-16 and HPV-32 was detected using a type specific PCR assay.

Statistical analysis was performed using SPSS version 22.

⁶Detection of HPV 16 and 32 from HIV+ Individuals ⁹⁹ Ashleigh McQuirter¹, Nia Nelson² and mentor, Michael Hagensee, MD, PhD³ ¹Dillard University; ^{2,3}LSU Health Sciences Center, School of Medicine, Section of Infectious Disease Stanley S. Scott Cancer Center – Short Research Experiences in Cancer

	emogra	phics	Š
Demographics	Frequency	Percent	Mean
Age			42
1-30	46	9.2%	
31-40	156	31.1%	
41-50	197	39.2%	
51>	96	19.1%	
Total	495		
Race			
White	149	29.7%	
Black	340	67.7%	
Hispanic	2	0.4%	
Asian	1	0.2%	
Indian	7	1.4%	
Other	2	0.40%	
Total	501		
Gender			
Female	164	32.7%	
Male	333	66.3%	
Total	497		
CD4 Count		27.00/	437
1-200	137	27.3%	
201-500	170	33.9%	
>500	154	30.7%	
Total	461		77.576
Viral Load	212	42 20/	77,576
1-1,000	212	42.2%	
1,001-100,000	167	33.3%	
>100,001 Total	71	14.1%	
HPV Positive	450		
HPV-16	14/364	3%	
HPV-10 HPV-32	39/499	8%	

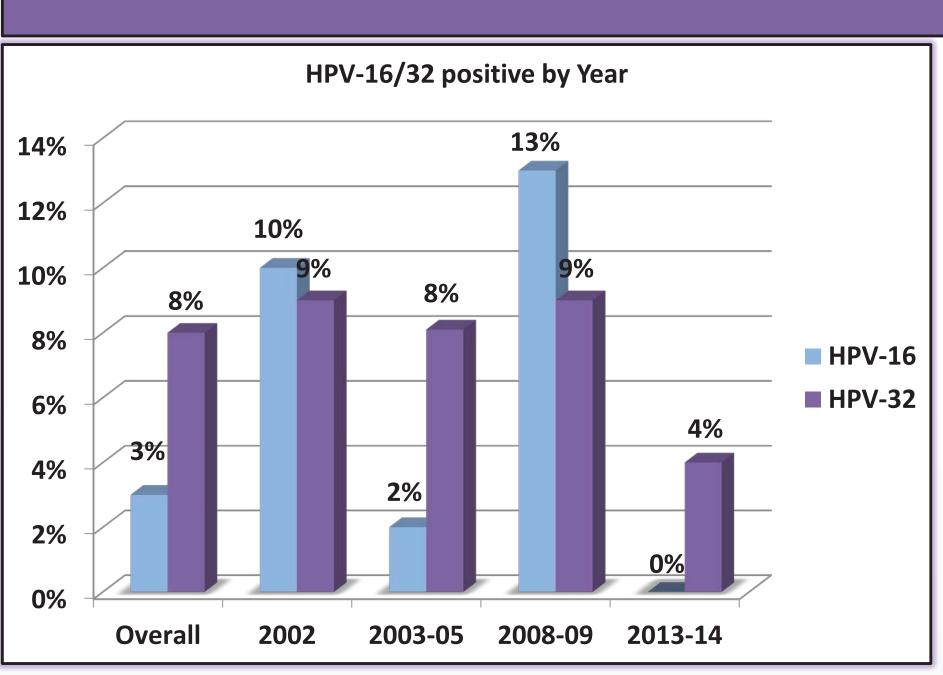


Fig. 1 Subjects positive for HPV-16 and/or HPV-32 stratified by year. Overall there was a strong statistical difference in the HPV-16 rates by year (p=.000) with specific significant decreases seen between 2002 and 2003-5 (p=.048) as well as between 2008-9 and 2013-14 (p=.011)

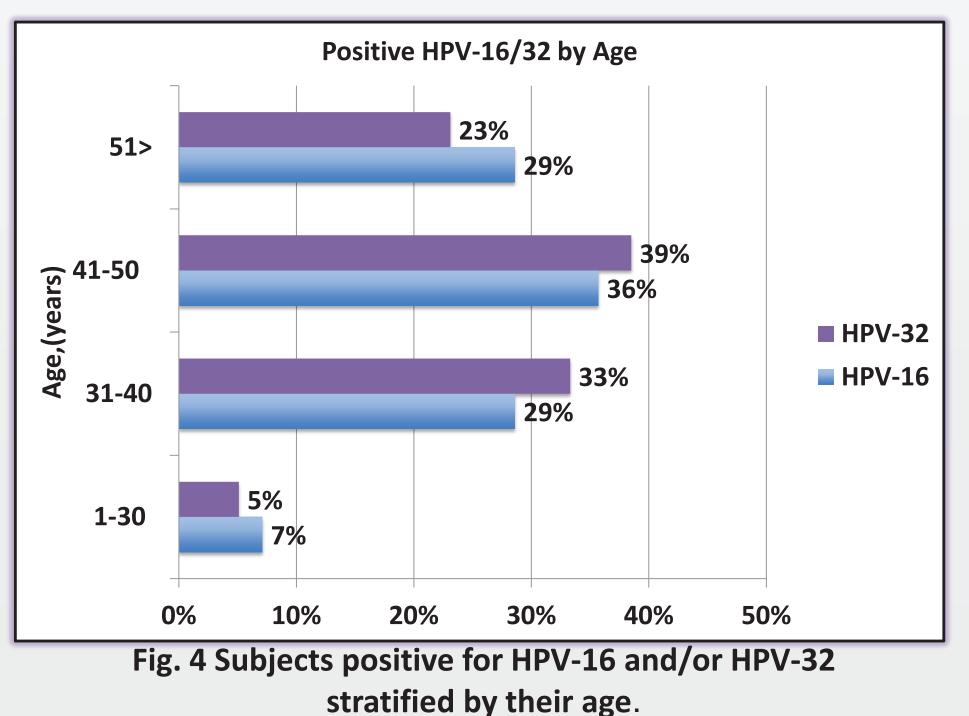
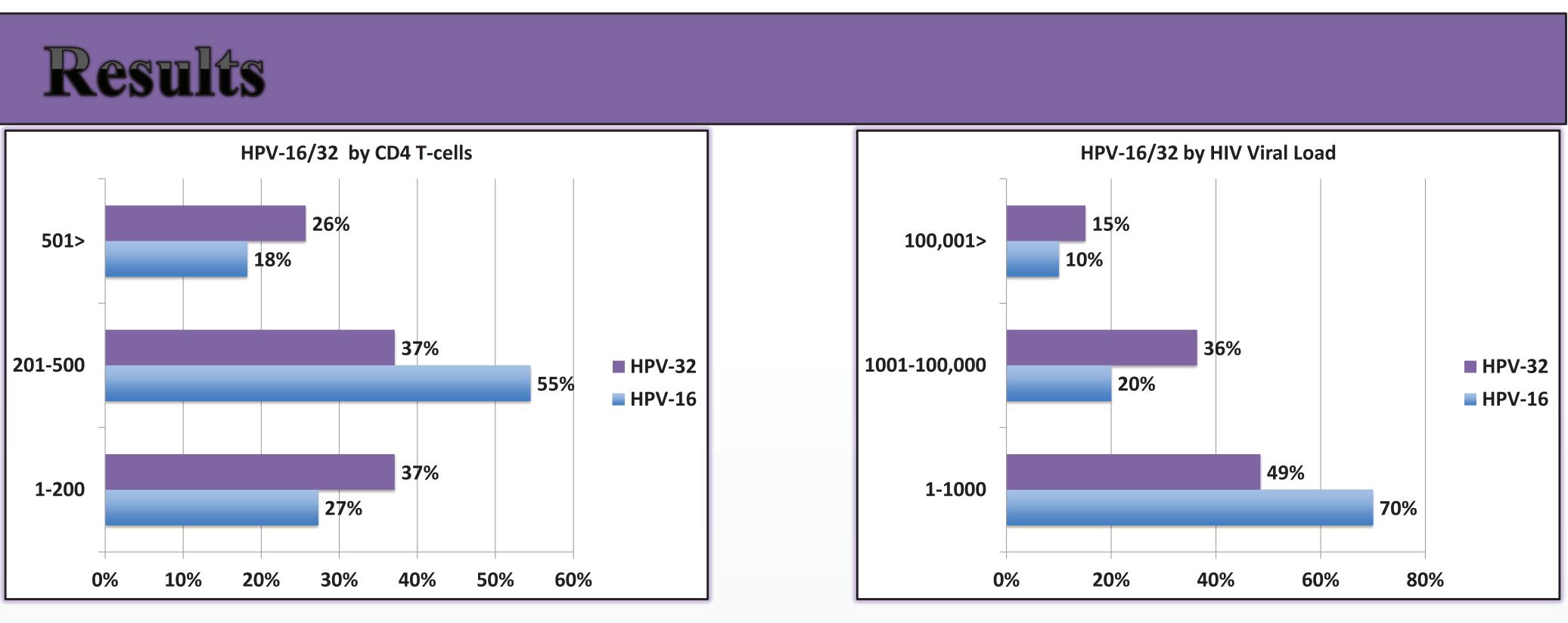
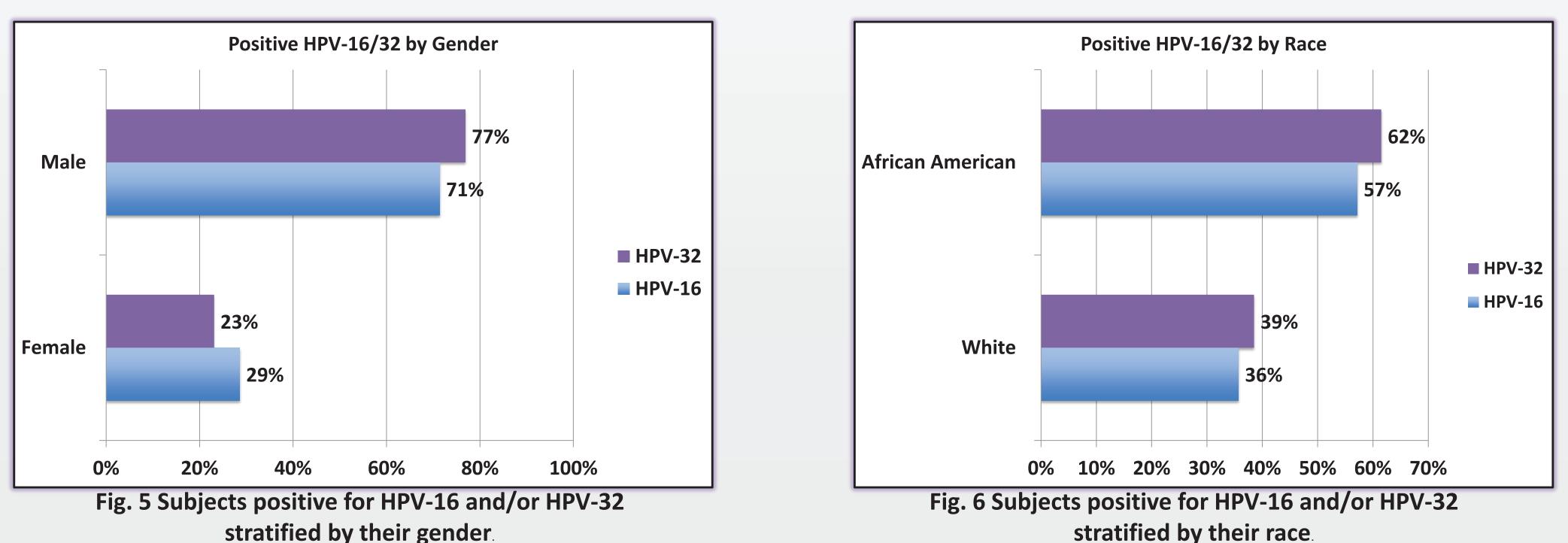




Table 1: The reasons for the drop in HPV-16 oral infection rate is not clear. Further evaluation noted a trend for increase in CD4 cell counts (p=0.13) and the age was significantly increased (p=0.000) in the 2013 group as compared to the 2008-9 group.

Year	CD4	VL	Age	
2002	367	105,284	44.3	
2003	451	84,126	39.9	
2004-5	417	64733	42.2	
2008-9	422	57683	43.2	
2013	506	62316	51.8	

A Dillard University - LSUHSC Collaboration

Minority Health & Health Disparities RESEARCH CENTER

Conclusions

with a CD4 T-cell count between 201-500 cells/mm³ had an increased rate of and/or HPV-32 positive infections than those with counts <200 or >501 but not statistically significant.

that were between the ages of 41-50 had an increased rate of positive HPV r HPV-32 infections than those who were ages 1-30, 31-41, and /or >50 but not statistically significant.

who were male had an increased rate of positive HPV -16 and/or HPV-32 than females but this was not statistically significant.

mericans had an increased rate of positive HPV -16 and/or HPV-32 infections mpared to Whites yet this was not statistically significant.

with a 1-1,000 copies/ml HIV viral load had an increased rate of HPV -16 IPV-32 infections than those with a viral load of 1,001-100,000 and/or but this was not statistically significant.

between year 2008-2009 had an increased rate of HPV -16 infections d to those between the years of 2002-2005 and 2013-2014. Overall, a strong difference in the HPV-16 rates by year (p=.000) with specific significant seen between 2002 and 2003-5 (p=.048) as well as between 2008-9 and (p=.011). This may be partially explained by an increase in age of the 2013-14 rticipants.

DIRECTIONS – plan to implement strategies to analyze the role of HAART ctive anti-retroviral therapy) in the rates of oral HPV-16 and 32 in these

Fig. 3Subjects positive for HPV-16 and/or HPV-32 stratified by their HIV viral load.