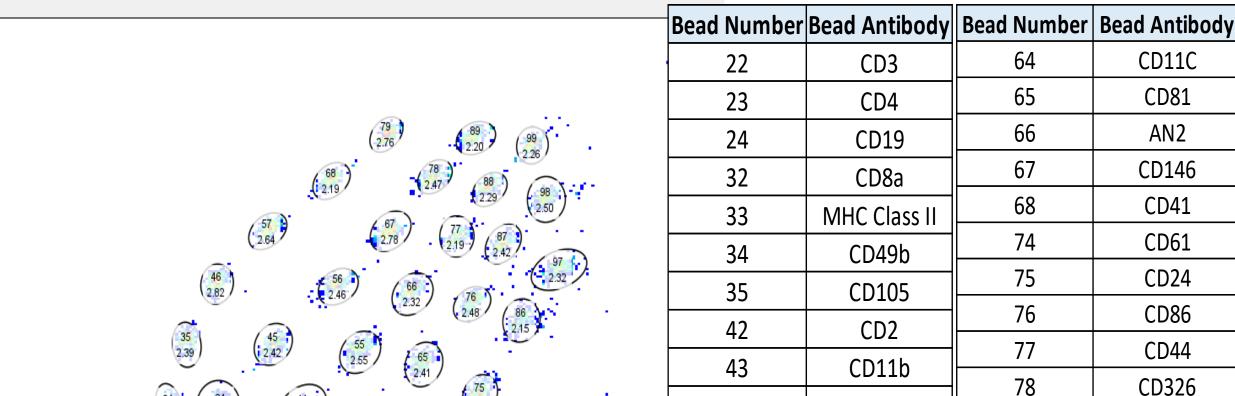
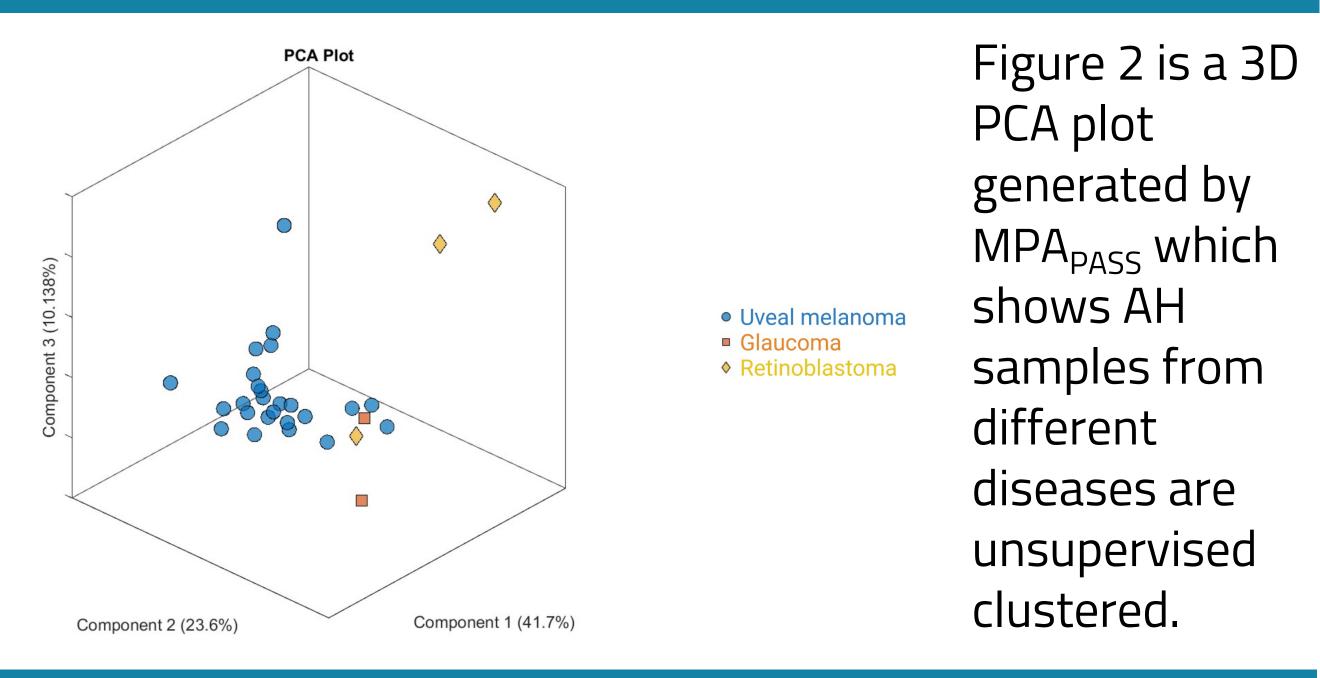
Multiplexed Bead-based Extracellular Vesicle Profiling of Aqueous Humor from Uveal Melanoma Eyes

Lisa Kam¹ BS, Chen-Ching Peng^{2,3,4} PhD, Jesse L. Berry^{2,3,4} MD, Liya Xu^{2,3,4} PhD ¹ Louisiana State University Health Sciences Center, New Orleans, LA; ²The Vision Center, Children's Hospital Los Angeles, CA; ³USC Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, CA; ⁴The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA



USC Norris Comprehensive Cancer Center Keck Medicine of USC


Introduction

Extracellular vesicles (EVs) are small vesicles crucial for cellular communication and have potential as cancer biomarkers. However, a standardized analysis method using multiplexed bead-based flow cytometry for EVs in aqueous humor (AH) is yet to be established.

Figure 1: Gating Flow Cytometry Data

Figure 2: Clustering of UM, GLC, and RR

This study aims to utilize intraocular EVs in AH as a liquid biopsy platform for uveal melanoma (UM) patients. The stability and accessibility of AH make it an attractive option to monitor UM progression and metastasis over time.

MPAPASS is an innovative framework developed to analyze EV profiles using multiplexed bead-based assays. Our objective is to evaluate MPAPASS as a universally accepted tool for analyzing EV data in AH samples from UM patients.

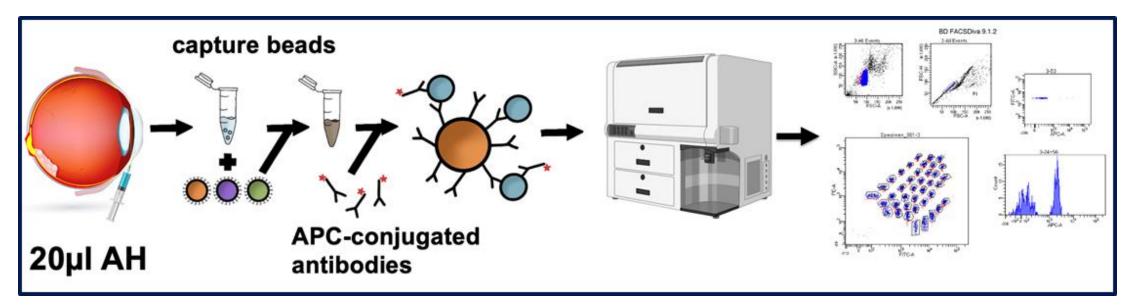
Methods

- Our dataset included 29 AH samples collected from:
 - 24 uveal melanoma diagnostic samples
 - 3 retinoblastoma samples
 - 2 glaucoma samples
- 20 μ L of each AH sample was subject to

	1 1		70	CESEC
	44	CD25	79	Prominin-1
	45	CD49e	85	CD29
	46	CD140a	86	CD69
$\begin{pmatrix} 22 \\ 2.32 \\ 2.32 \\ 2.78 \\ 2.84 \\ 2.84 \\ 2.84 \\ 2.84 \\ 2.54 \\ 2.54 \\ 2.63 \\ 2.63 \\ 2.63 \\ 2.60 \\ 2.60 \\ 2.60 \\ 2.61 \\ $	52	CD66a	00	
	52	CD00a	87	CD142
	53	CD9	88	CD45
	54	CD205	89	CD31
-10 ³	55	MHCI	96	REA Control
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	CD63	97	CD20
-0-	57	CD40	98	CD115
FITC-A T	63	CD62P	99	EphA2

Figure 1 shows an example of data generation after gating flow cytometry data (UM 43). Values represent fluorescence intensity in the *FITC-A* and *PE-A* detectors. This fluorescent signature allows us to identify EVs that display specific markers, corresponding to our beads.

After excluding cell debris for each *SSC vs FSC* scatter plot, we performed similar circular gating for all 39 bead populations on *FITC-A* and *PE-A* channels in each bivariate dot plot. The respective bead legend is based off the *Miltenyi biotec MACSPlex Exosome* protocol.

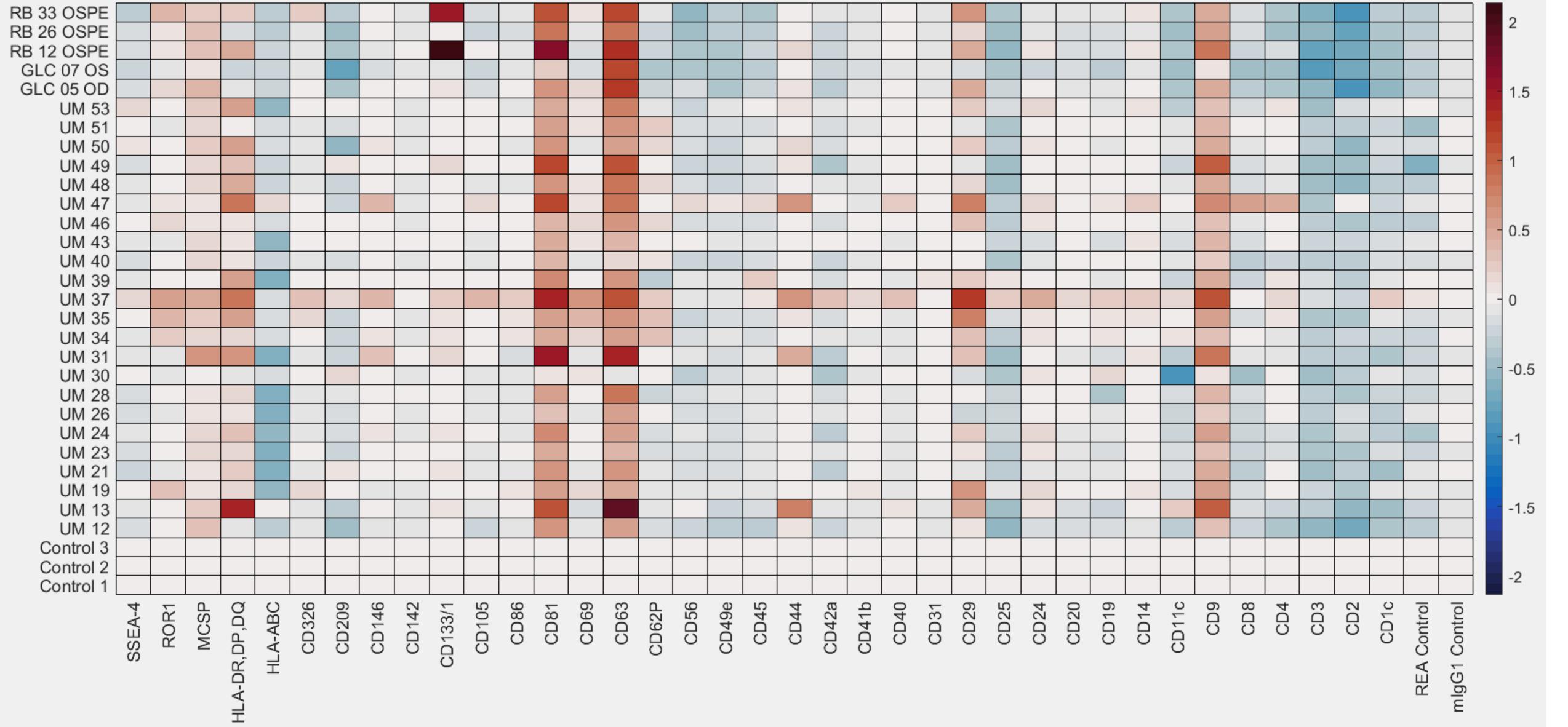

Figure 3: Intensity Map of EVs

Conclusion and Future Directions

- Robust magnetic bead-based EV profiling enables detailed statistical analysis and clinical marker associations
- Disease-specific EV expression observed (UM: HLA-DR/DP/DQ, CD29, MCSP; RB: CD133/1)
- Further statistical analysis is warranted to fully explore the implications of the observed disease-specific EV expression patterns.
- Future research plans include comparing the coexpression patterns of tetraspanins at the single vesicle resolution with previous findings, to gain deeper insights into EV characteristics.

multiplexed bead-based EV profiling (MACSPlex).

 This data was analyzed on MPA_{PASS} after fold change normalization (log-scaled).


The diagram above is an illustrative workflow for multiplexed bead-based flow cytometry to analyze surface markers on EVs.

References

 Welsh JA et al. MPA_{PASS} software enables stitched multiplex, multidimensional EV repertoire analysis and a standard framework for reporting bead-based assays. Cell Rep Methods. 2022 Jan 24;2(1):100136. PMID: 35474866.

 Im DH, Peng CC, Xu L, Kim ME, Ostrow D, Yellapantula V, Bootwalla M, Biegel JA, Gai X, Prabakar RK, Kuhn P, Hicks J, Berry JL. Potential of Aqueous Humor as a Liquid Biopsy for Uveal Melanoma. Int J Mol Sci. 2022 Jun 2;23(11):6226. PMID: 35682905

Acknowledgements

Knight Templar Eye FoundationCHLA TSRI RCDA

Norris Comprehensive Cancer Center, USC, LA

CHLA/KECK SORF Program
TriDelta

Concern Foundation

In Figure 3, the authentic surface markers of small extracellular vesicles (EVs), namely tetraspanins – CD81, CD63, and CD9, are expressed with a significantly high enrichment ratio as anticipated. The three most enriched surface markers specific to UM identified in this analysis are: **HLA-DR/DP/DQ**, a major histocompatibility complex (MHC) class II molecule responsible for immune recognition of UM; **CD29** (Integrin β1), which may be associated with UM tumor progression; and **MCSP** (Melanoma-associated Chondroitin Sulfate Proteoglycan), a marker used for capturing circulating tumor cells of UM. **CD133/1** represents a unique marker of cellular differentiation for RB patients.