Building a Safe Healthcare System
Objectives

- Discuss the process of improving healthcare systems.
- Introduce widely-used methodologies in QI/PS.
What is Quality Improvement?

- Process of continually evaluating clinical practices using patient outcomes as the basis.

- Patient safety is a subset of QI.
 - Minimizing risks of errors and injury.
 - Increase chances of catching errors before they occur – through system performance.

Quality Is a Team-Oriented Process

Goal: Patient-centered care

- Quality Management departments
- Regulatory requirements
- Risk Management departments
- Surveys of patient satisfaction
- Adverse event reviews

4

Quality Is a Team-Oriented Process

Goal: Patient-centered care

- Quality Management departments
- Regulatory requirements
- Risk Management departments
- Surveys of patient satisfaction
- Adverse event reviews
Effecting System Change: Process

Planning

Defining the process

Effecting Change

• **Benchmarking**: Compare ourselves with others or from an historical internal perspective.

• Root Cause Analysis
• Fishbone (Ishikawa) Diagrams
• Flow Charts
• Brainstorming

• Recognize and accept need for change
• Identify participants, resources, and the value of change.
• Implement interventions.
• Monitor outcomes.
Effecting System Change: Culture

- Organizational culture: patterned way that an organization responds to challenges.
- Organizational learning: process of increasing the capacity for effective organizational action through knowledge and understanding.
- Culture of safety: safety is everyone’s responsibility; avoids shame-and-blame; errors are learning opportunities.

Effecting System Change: Culture

Suppression—Harming or stopping the person bringing the anomaly to light; “shooting the messenger”

Encapsulation—Isolating the messenger, so that the message is not heard

Public relations—Putting the message “in context” to minimise its impact

Global fix—An attempt to respond to the problem wherever it exists. Common in aviation, when a single problem will direct attention to similar ones elsewhere

Inquiry—Attempting to get at the “root causes” of the problem

- **Pathological**
- **Bureaucratic**
- **Generative**
Highly Reliable Systems

- Necessary resources are allocated to safety.
- Openness exists regarding errors and problems.
- Communication is frequent and candid and organizational learning is promoted.

<table>
<thead>
<tr>
<th>Property</th>
<th>Contrasted with</th>
<th>Promoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pessimism about possibilities of failure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus on representational mistakes | Optimism that safety is an achieved property
Focus on safety awards and specific performance milestones | Culture of doubt and scepticism
Procedural counter checks |
| Generalised failure concern | Punishment of failure at performance level | Regulation against action outside analysis
Procedural revisions |
| Wide distribution of reliability responsibility | Focus on specified safety issues | Extended root cause analysis
Constant search for improvement
Use of reliability proxy variables |

Highly Reliable Systems: Teams

- Highly reliable teams:
 - Adapt to changes in task environment.
 - Maintain open and flexible communication.
 - Anticipate the needs of each team member.

Entin EE and Serfaty D, Hum Factors 1999 41:312-325
Highly Reliable Systems: Microsystem

- Each local group of clinicians, staff working together with shared clinical purpose to provide care for their patients.

Box 1. Eight dimensions of high performing microsystems

- Constancy of purpose
- Investment in improvement
- Alignment of role and training for efficiency and staff satisfaction
- Interdependence of the care team to meet patient needs
- Integration of information and technology into work flows
- Ongoing measurement of outcomes
- Supportiveness of the larger organisation
- Connection to the community to enhance care delivery and extend influence

Highly Reliable Systems: Reducing Error

- Decrease complexity.
- Optimize information processing.
- Automate intelligently.
- Employ constraints.
 - Physical
 - Procedural
 - Cultural
- Avoid the unwanted side effects of change.
Analyzing Data to Improve

- PDCA
- Human Factors Engineering
- Lean
- RCA
- FMEA/HFMEA
- Six Sigma
Common Methodology: RCA

- Root Cause Analysis: identify the basic causal factors underlying a variation or adverse event.

The error is like a weed – only a symptom of more widespread underlying problems.

RCA analyzes underlying causes of adverse events – problems that are below the surface and not obvious.

Common Methodology: PDCA

- Hospital and private practice systems use the Plan, Do, Check (Study), Act cycle methodology.
- Used by the Joint Commission (JC), the Centers for Medicare and Medicaid Services (CMS), and other regulatory agencies.
Common Methodology: PDCA

Plan: Explore a challenge, perform a literature search, and develop an action plan that is measureable, achievable, and relevant.

Do: Implement your action plan with quantifiable data measurement.

Act: Develop plan to implement change. If successful, periodically reevaluate to maintain levels of success. If not successful, modify action plan and repeat cycle.

Check (Study): Evaluate progress to plan change.

Common Methodology: Lean

- Cultural commitment to know and provide what customer wants.
- Revise process to:
 - Eliminate waste.
 - Add value.

Sample tool: Fishbone diagram – Map out all the variables.

Common Methodology: Lean

- **Push**: Reactively dealing with delays.
- **Pull**: Anticipate problems and optimize the system.

Eliminate “Pushes” and adopt “Pulls.”

Common Methodology: Human Factors

- Study human behavior, abilities, limitations and interaction with system components.
- Human Error Theory: inherent risks for organization-wide and personal error – therefore, layers of defense.

Common Methodology: Human Factors

- **Swiss cheese model:**
 - Human error is *inevitable*.
 - An error-free system cannot be created.
 - Systems require *layers of defense*.

http://patientsafetyed.duhs.duke.edu/module_e/swiss_cheese.html
Common Methodology: Human Factors

Common Methodology: Human Factors

Some mechanisms already adopted based on human factors.

Universal Protocol For Preventing Wrong Site, Wrong Procedure, Wrong Person Surgery™

- Preoperative verification process
- Operative site marking
- Time Outs

All Joint Commission mandates since July 2004
There are many other QI methodologies and tools. Additional resources are available on the EQuIP website.
Analyzing Data to Improve

- If corrective action is validated by improved outcomes, plan to roll out with good communication and training for staff.
- Plan to monitor frequently.

Quality improvement is an ongoing process!
Summary

- System change and improvement is long-term and continual process.
 - Both cultural and process issues are important.
- There are many methodologies and tools, but the keys to success are the same.
 - Analysis of current performance.
 - Communication.
 - Measurable outcomes and monitoring.
- Every system has inherent risks for error.
EQuIP Staff

EQuIP Director
Murtuza (Zee) Ali, MD, FACC, FSCAI
mali@lsuhsc.edu

EQuIP Coordinator
Victoria Harkin, MA
vharki@lsuhsc.edu
(504) 568-2593
Acknowledgements

- Murtuza Ali, MD
- Peter DeBlieux, MD
- John Paige, MD
- Fred Rodriguez, MD
- Rebecca Frey, PhD
- Stacey Holman, MD
- Richard Tejedor, MD
- Quality, Safety and Risk Department, Interim LSU Hospital.