LSU Health New Orleans

Departments & Centers | Contact | Donate

Administration Basic Sciences Clinical Sciences Centers of Excellence
 

 

new%20carmen%20for%20board

C. Canavier, Ph.D.

Professor and Vice Chair for Research
Department of Cell Biology and Anatomy

1901 Perdido Street, 6135
New Orleans, LA 70112

Phone: (504) 599-0486

Fax: (504) 568-5801

ccanav@lsuhsc.edu

 
2011 Lab Members from left to right: Lakshmi Chandrsekaran, Shuoguo Wang, Carmen Canavier, Sai Achuthan, Marco Huertas, Kun Qian, and Ruben Tikidji-Hamburyan

 
Selva's going away party with the Canavier Lab on the occasion of his doctorate.

http://www.medschool.lsuhsc.edu/faculty/docs/canavier_retreat.pdf

Degrees

1987-1991: Ph.D., Rice University, Houston TX
1975-1979: B.E., Vanderbilt University, Nashville TN

Bio

Study Sections 

  • Permanent Member of the Cognitive Neuroscience Study Section at the Center for Scientific Review through June 30, 2009.
  • Ad hoc member of the NINDS study section NSD-B, Feb. 28, 2008.
  • NSF CRCNS B Panel to review grants submitted to the Joint NSF/NIH Collaborative Research on Computational Neuroscience, Jan. 15-16, 2009.
  • ARRA R15 AREA Special Emphasis panel for NIH CSR on Dec. 7, 2009.
  • NIH Special Emphasis Panel ZRG1 IFCN-L (02) M Vision and Cognition Jan. 20-21, 2010.
  • NSF-NIH Panel to review grants submitted to the Collaborative Research in Computational Neuroscience program and the German-USA Collaboration in Computational Neuroscience Feb. 22-23, 2010.
  • National Institute of Mental Health Special Emphasis Panel Conte Center Review, Feb. 25, 2010.

Awards/Recognitions/Lectures

NIH Special Emphasis Panel ZRG1 IFCN-L (02) M Vision and Cognition Jan. 20-21, 2010.

NSF-NIH Panel to review grants submitted to the Collaborative Research in Computational Neuroscience program and the German-USA Collaboration in Computational Neuroscience Feb. 22-23 2010.

National Institute of Mental Health Special Emphasis Panel Conte Center Review, Feb. 25, 2010.

NSF CRCNS B Panel to review grants submitted to the Joint NSF/NIH Collaborative Research on Computational Neuroscience, Jan. 15-16, 2009.

Permanent Member of the Cognitive Neuroscience Study Section at the Center for Scientific Review through June 30, 2009.

ARRA R15 AREA Special Emphasis panel for NIH CSR on Dec. 7, 2009.

Ad hoc member of the NINDS study section NSD-B, Feb. 28, 2008.

2003 — Visiting Fellow, Mathematical Biosciences Institute, Columbus, Ohio

2000 — Visiting Fellow, Centre de Recherches Mathematiques, Montreal

1998 — Visiting Fellow, Institute for Mathematics and its Applications, Minneapolis, MN

1975 — National Merit Scholar

Positions:
2005 – present: Associate Professor of Ophthalmology and Neuroscience, Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA

2001-2005: Associate Professor, University of New Orleans

1999-2001: Assistant Professor, University of New Orleans

1997-1999: Associate Professor/Research, University of New Orleans

1995-1997: Research Assistant Professor, UT Health Sciences Center, Houston TX

1994-1995: Postdoctoral Fellow, UT Health Sciences Center, Houston TX

1993-1994: Research Fellow, Baylor Medical School, Houston TX

1991-1993: Postdoctoral Fellow, UT Health Sciences Center, Houston TX

Research Interests

Computational Neuroscience: Nonlinear Dynamics of Single Neurons and Small Networks

Oscillations and Synchrony: How do neurons synchronize their activity? How are pacemaking and bursting oscillations generated and modulated?

My major area of research interest is computational neuroscience, specifically the nonlinear dynamics of neurons and small networks, synchronization, oscillation, central pattern generation, bursting neurons, midbrain dopaminergic neurons, and the regulation of the firing pattern in neurons.

I have pursued two lines of research during my career. The first is the synchronization and phase locking of small networks of neurons. One application of this research is a better understanding of central pattern generating networks for respiration, locomotion, and other repetitive motor activities. I have utilized primarily a technique called phase resetting, or phase response curves. This technique can be applied to any cyclical process, and was developed initially to better understand circadian rhythms. I have contributed to the application of these methods to neural oscillators, which have additional complications such as threshold behavior and pulsatile coupling. I have published many original proofs regarding the synchronization of neural oscillators. These proofs utilize both nonlinear systems theory (manifested as phase resetting) and linear systems theory (manifested as stability analyses) applied to neural networks. Currently, I am collaborating with invertebrate electrophysiologists to test these methods in hybrid circuits comprised of one biological neuron and one computational model neuron using a technique called the dynamic clamp. One goal of this work is to generalize to larger oscillatory networks such as those observed in mammalian cortex.

  The second line of research involves the biophysical basis of different firing patterns in neurons, such as regular pacemaker firing, burst firing and irregular firing. My initial work was on neuron R15 in Aplysia, but my current research focuses on the dopaminergic neurons of the mammalian midbrain. These neurons exhibit a wide variety of electrical activity both in a slice preparation and in the intact animal. In collaboration with electro-physiologists, this line of research focuses on how the intrinsic currents generate the firing pattern, and how they interact with synaptic currents and neuromodulators to produce alterations in the firing pattern. Dysfunctional dopaminergic signaling has been implicated in a number of diseases, and the firing pattern in these neurons, in particular the timing of burst firing, is thought to have important functional consequences. I utilize techniques from the mathematical field of nonlinear dynamics, including bifurcation theory, as well as computational techniques to simulate multi-compartment neurons, in order to synthesize the experimental data into a theoretical model of dopamine neurons. One goal of this research is to predict the effect of different types of plasticity as well as various pharmaceutical agents on the electrical activity of dopamine neurons.

Current Research

    The work in my lab is computational in nature. Funded collaborations, generally use the Dynamic Clamp to integrate theory and experiment, and currently include the following experimental labs: Dr. Robert Butera (Georgia Tech), Dr. Astrid Prinz (Emory), Dr. Paul Shepard (Maryland Psychiatric Research Institute), Dr. Edwin Levitan (Pittsburgh Medical School), and Dr. John A. White (University of Utah).  Synchronization of neural activity is one unifying theme of the research conducted in my lab. Synchronization in its broadest sense encompasses the generation of the phase locked patterns exhibited by the central pattern generators responsible for rhythmic activity such as respiration and locomotion. Hence we have developed general criteria under which such lockings can occur in oscillators in which the duration of the postsynaptic potential is short compared to a cycle period.  Synchronized oscillations are also thought to underlie many aspects of cognition. Rapid, internally generated synchronization between distal regions in the brain that relies on intrinsic oscillation has been shown to be important for encoding, retention, and retrieval of information and proposed to underlie binding and conscious perception. Cross frequency synchronization between theta and gamma has been suggested to match the information stored in working memory with incoming sensory information, and synchronization between alpha and theta has been suggested as a mechanism for retrieving items from long-term memory and loading them in working memory. Synchronization of brain rhythms is known to be affected in most psychiatric disorders.  We have recently produced a novel proof that synchrony is a generic solution of identical pulse coupled oscillators separated by a conduction delay, and shown that the robustness of the near synchronous solution in the presence of heterogeneity increases with coupling strength. We have also recently established existence and stability criteria for N:1 cross frequency lockings for pulse coupled oscil-lators. Another focus area is the oscillatory dynamics of bursting and pacemaking rhythms. The dopaminergic neurons of the mammalian midbrain have been extensively modeled in my lab. The coupled oscillator theory of the dopamine neurons holds that the spiking rate is usually driven by slow calcium oscillations in the soma and larger dendrites but during bursting the activation of distal NMDA receptors allows the smaller dendrites to dominate. Recently we have shown that in the presence of spiking activity, the intuition that the natural frequency of the smaller dendrites is faster does not hold. We have also recently suggested critical roles for the L-type calcium current and the SK potassium current in bursting activity, as well as a role for the ether a-go-go related potassium current in relieving depolarization block. Abnormal dopaminergic signaling has been implicated in Parkinson's, schizophrenia, and drug abuse.

Teaching Activities

Lecturer:

NEURO 250 and ANAT 264

Selected Publications

Recent Papers:

Tucker KR, Huertas MA, Horn JP, Canavier CC, Levitan ES. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act.J Neurosci. 2012 Oct 17;32(42):14519-31. doi: 10.1523/JNEUROSCI.1251-12.2012. PMID: 23077037 [PubMed - indexed for MEDLINE]

Sieling FH, Archila S, Hooper R, Canavier CC, Prinz AA. Phase response theory extended to nonoscillatory network components. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056208. Epub 2012 May 14. PMID: 23004844 [PubMed - in process]Free PMC Article

Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons - implications for a role in depolarization block. Eur J Neurosci. 2012 Oct;36(7):2906-16. doi: 10.1111/j.1460-9568.2012.08190.x. Epub 2012 Jul 11. PMID: 22780096 [PubMed - in process]

Wang S, Chandrasekaran L, Fernandez FR, White JA, Canavier CC. Short conduction delays cause inhibition rather than excitation to favor synchrony in hybrid neuronal networks of the entorhinal cortex. PLoS Comput Biol. 2012 Jan;8(1):e1002306. doi: 10.1371/journal.pcbi.1002306. Epub 2012 Jan 5. PMID: 22241969 [PubMed - indexed for MEDLINE] Free PMC Article

Maran SK, Sieling FH, Demla K, Prinz AA, Canavier CC. Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms. J Comput Neurosci. 2011 Oct;31(2):419-40. doi: 10.1007/s10827-011-0319-y. Epub 2011 Mar 1. PMID: 21360137 [PubMed - indexed for MEDLINE] Free PMC Article

Woodman MM, Canavier CC. Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators. J Comput Neurosci. 2011 Oct;31(2):401-18. doi: 10.1007/s10827-011-0315-2. Epub 2011 Feb 23. PMID: 21344300 [PubMed - indexed for MEDLINE] Free PMC Article

Sieling FH, Canavier CC, Prinz AA. Inclusion of noise in iterated firing time maps based on the phase response curve. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061923. Epub 2010 Jun 25. PMID: 20866456 [PubMed - indexed for MEDLINE] Free PMC Article

Chandrasekaran L, Achuthan S, Canavier CC. Stability of two cluster solutions in pulse coupled networks of neural oscillators. J Comput Neurosci. 2011 Apr;30(2):427-45. doi: 10.1007/s10827-010-0268-x. Epub 2010 Aug 20. PMID: 20725773 [PubMed - indexed for MEDLINE] Free PMC Article

Achuthan S, Butera RJ, Canavier CC. Synaptic and intrinsic determinants of the phase resetting curve for weak coupling. J Comput Neurosci. 2011 Apr;30(2):373-90. doi: 10.1007/s10827-010-0264-1. Epub 2010 Aug 11. PMID: 20700637 [PubMed - indexed for MEDLINE] Free PMC Article

Canavier CC, Achuthan S. Pulse coupled oscillators and the phase resetting curve. Math Biosci. 2010 Aug;226(2):77-96. doi: 10.1016/j.mbs.2010.05.001. Epub 2010 May 10. Review. PMID: 20460132 [PubMed - indexed for MEDLINE] Free PMC Article

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. J Comput Neurosci. 2010 Jun;28(3):389-403. doi: 10.1007/s10827-010-0222-y. Epub 2010 Mar 10. PMID: 20217204 [PubMed - indexed for MEDLINE] Free PMC Article

Canavier CC, Kazanci FG, Prinz AA. Phase resetting curves allow for simple and accurate prediction of robust N:1 phase locking for strongly coupled neural oscillators.Biophys J. 2009 Jul 8;97(1):59-73. doi: 10.1016/j.bpj.2009.04.016. PMID:19580744 [PubMed - indexed for MEDLINE]  Free PMC Article

Cui J, Canavier CC, Butera RJ. Functional phase response curves: a method for understanding synchronization of adapting neurons.J Neurophysiol. 2009 Jul;102(1):387-98. doi: 10.1152/jn.00037.2009. Epub 2009 May 6. PMID:19420126m [PubMed - indexed for MEDLINE] Free PMC Article

Achuthan S, Canavier CC. Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J Neurosci. 2009 Apr 22;29(16):5218-33. doi: 10.1523/JNEUROSCI.0426-09.2009. PMID:19386918 [PubMed - indexed for MEDLINE] Free PMC Article

Sieling FH, Canavier CC, Prinz AA. Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. J Neurophysiol. 2009 Jul;102(1):69-84. doi: 10.1152/jn.00091.2009. Epub 2009 Apr 8. PMID:19357337 [PubMed - indexed for MEDLINE]  Free PMC Article

Migliore M, Cannia C, Canavier CC. A modeling study suggesting a possible pharmacological target to mitigate the effects of ethanol on reward-related dopaminergic signaling.J Neurophysiol. 2008 May;99(5):2703-7. doi: 10.1152/jn.00024.2008. Epub 2008 Mar 19. PMID: 18353916 [PubMed - indexed for MEDLINE] Free Article

Shepard PD, Canavier CC, Levitan ES. Ether-a-go-go-related gene potassium channels: what's all the buzz about? Schizophr Bull. 2007 Nov;33(6):1263-9. Epub 2007 Sep 28. Review. PMID:17905786 [PubMed - indexed for MEDLINE]  Free PMC Article

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD. Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. J Neurophysiol. 2007 Nov;98(5):3006-22. Epub 2007 Aug 15. PMID:17699694 [PubMed - indexed for MEDLINE] Free Article

Maran SK, Canavier CC. Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. J Comput Neurosci. 2008 Feb;24(1):37-55. Epub 2007 Jun 19. PMID:17577651 [PubMed - indexed for MEDLINE]  Free PMC Article

Luo C, Clark JW Jr, Canavier CC, Baxter DA, Byrne JH Multimodal behavior in a four neuron ring circuit: mode switching. IEEE Trans Biomed Eng. 2004 Feb;51(2):205-18. PMID:14765693 [PubMed - indexed for MEDLINE]

Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons. J Neurophysiol. 2004 Jan;91(1):346-57. Epub 2003 Sep 17. PMID:13679411 [PubMed - indexed for MEDLINE]  Free Article

Oprisan SA, Canavier CC. The influence of limit cycle topology on the phase resetting curve. Neural Comput. 2002 May;14(5):1027-57. PMID:11972906 [PubMed - indexed for MEDLINE]

Komendantov AO, Canavier CC. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.J Neurophysiol. 2002 Mar;87(3):1526-41. PMID:11877524 [PubMed - indexed for MEDLINE]  Free Article

Additional Info

Funding

"Intrinsic currents modulate synaptic integration in dopamine neurons"
Principal Investigator: Carmen C. Canavier, Ph.D.
Agency: NIH-NINDS (R01NS061097)
Period: 01/01/2009-12/31/2013  

 "Phase resetting predicts synchronization in hybrid hippocampal circuits"
Principal Investigators: Carmen C. Canavier, Ph.D. and John A White, Ph.D.
Agency: NIH-NIMH (R01MH085387)
Period:08/20/2008-06/30/2011

"Collaborative Research in Computational Neuroscience: Analysis of synchronization in hybrid neural circuits"
Principal Investigator: Carmen C. Canavier, Ph.D.
Agency: NIH-NINDS (R01NS054281)
Period: 09/15/2005-05/31/2009