

School of Medicine

Background

- Alcohol (ethanol) abuse is a widely recognized risk factor in the development of several diseases, including skeletal disorders.
- Previous studies in our lab have shown that ethanol induces reactive oxygen species (ROS) production in osteogenic cells, which results in oxidative damage, skeletal dysfunction, and osteoporosis.
- In osteogenic cells, a major source of ethanol-mediated ROS is derived from NADPH oxidases (NOXs).
- Ethanol inhibits epiphyseal plate proliferation in longitudinal bones and affects chondrocyte function, which results in shorter bones.
- It remains uncertain if ROS produced by NOXs during alcohol metabolism result in impaired chondrocyte function and differentiation.

Objective

To investigate if chronic alcohol exposure in murine chondrocytes will affect chondrogenesis through the induction of *Nox* expression and subsequent ROS production.

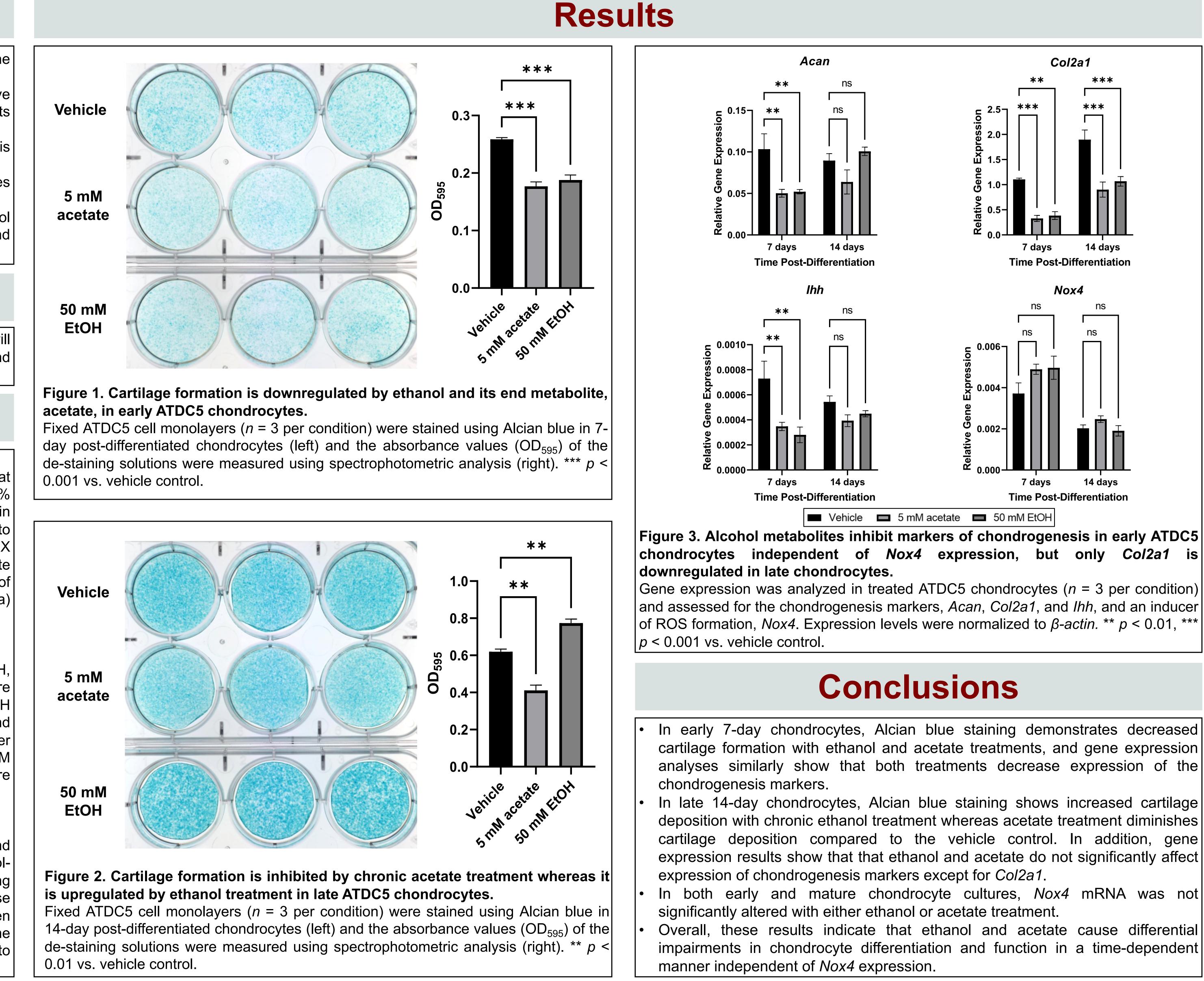
Methods

Cell Culture

Murine ATDC5 pre-chondrocytes were seeded onto 6-well plates at 6,000 cells/cm² and grown for 3 days in ATDC5 media containing 5% FBS in DMEM/F12 (1:1) + 1X GlutaMAX and 1% penicillin/streptomycin (Gibco). After reaching confluence, the cells were induced to differentiate using ATDC5 media supplemented with 1X insulin/transferrin/selenium (Gibco), 10 mM β-glycerophosphate (Sigma), and 50 µM sodium L-ascorbate (Sigma) in the presence of either vehicle, 50 mM ethanol (EtOH), or 5 mM sodium acetate (Sigma) for 7 or 14 days. Media was replaced every 2-3 days.

Alcian Blue Staining

Cell monolayers were fixed using a solution containing 30% EtOH, 0.4% para-formaldehyde, and 4% acetic acid for 15 mins. Cells were rinsed with distilled water and stained with 0.05% Alcian blue-EtOH solution overnight at 37°C. Cells were rinsed with distilled water and imaged using the trans-illumination setting on the Amersham Imager 600 (GE Healthcare). Cell monolayers were then de-stained using 6 M guanidine hydrochloride (Sigma) overnight and OD₅₉₅ values were measured using a UV-Vis spectrophotometer (Molecular Devices).


Total RNA Isolation and Analysis

Total RNA was isolated by harvesting cell monolayers in TRIzol and homogenizing using the TissueLyser II (Qiagen) for standard phenolchloroform phase extraction. RNA concentrations were quantified using the Nanodrop ND-1000. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed using the PowerSYBR Green RNA-to-C_T 1-Step Kit (Applied Biosystems) with 12.5 ng RNA on the LightCycler 480 System (Roche). All target genes were normalized to β -actin and analyzed using the 2^{- Δ Ct} method.

Alcohol metabolism negatively affects early ATDC5 chondrocyte differentiation independent of NOX4 expression

Hardy Hang¹, Alexandra Denys¹, Martin J. J. Ronis¹

¹Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA

This research project was supported through the LSU Health Sciences Center, School of Medicine and NIH R37 AA018282 (M.J.R).

