Blood or Protein in the Urine: How much of a work up is needed?

Diego H. Aviles, M.D.
Disclosure

• In the past 12 months, I have not had a significant financial interest or other relationship with the manufacturers of the products or providers of the services discussed in my presentation.

• This presentation will not include discussion of pharmaceuticals or devices that have not been approved by the FDA.
Screening Urinalysis

- Since 2007, the AAP no longer recommends to perform screening urine dipstick
- Testing based on risk factors might be a more effective strategy
- Many practices continue to order screening urine dipsticks
STATE OF LOUISIANA
COMPREHENSIVE PHYSICAL EXAMINATION REPORT

Labs (if indicated) □ Not indicated
Hct or Hgb: □ WNL □ UTD □ UTO
Values: ________
Urine Dipstk: □ WNL □ UTD □ UTO
Comments: __________________
Lead if indicated (see criteria) ___

KEY: WNL = Within Normal Limits
UTD = Up to Date
UTO = Unable to Obtain
IP= In Progress
Outline

- Hematuria
 - Definition
 - Causes
 - Evaluation
- Proteinuria
 - Definition
 - Causes
 - Evaluation
- Cases
You are about to leave when...

- 10 year old female seen for 3 day history of URI symptoms and fever. Urine dipstick showed 2+ for blood and no protein.
Questions?

- What is the etiology for the hematuria?
- What kind of evaluation should be pursued?
- Is this an indication of a serious renal condition?
- When to refer to a Pediatric Nephrologist?
Hematuria: Definition

- Dipstick ≥ 1+ (large variability)
 - RBC vs. free Hgb
 - RBC lysis common
- > 5 RBC/hpf in centrifuged urine
- Can be
 - Microscopic
 - Macroscopic
Hematuria: Epidemiology

- Microscopic hematuria occurs 4-6% with single urine evaluation
- 0.1-0.5% of school children with repeated testing
- Gross hematuria occurs in 1/1300
Localization of Hematuria

- Kidney
 - Brown or coke-colored urine
 - Cellular casts
- Lower tract
 - Terminal gross hematuria
 - (Blood clots)
Glomerular Causes of Hematuria

- Acute post-infectious GN
 - Gross hematuria 1-2 weeks after acute illness
- IgA nephropathy
 - Gross hematuria during an acute illness, microhematuria when well
Glomerular Causes of Hematuria

- **HSP nephritis**
 - Hematuria +/- proteinuria with purpuric rash, arthralgias, abdominal pain
- **Hereditary nephritis**
 - Alport syndrome, associated with hearing loss, CKD
 - Thin basement membrane nephropathy (benign)
- **Systemic (SLE)**
Causes of Hematuria

- Kidney: non glomerular
 - Hypercalciuria
 - Stones
 - Interstitial nephritis
 - Malformations, cysts
 - Sickle cell disease/trait
 - Trauma
 - Tumor (Wilms)
Causes of Hematuria

- **Lower urinary tract**
 - Bacterial/viral UTI
 - Structural (obstruction, polyp)

- **Rare causes**
 - Coagulopathy
 - Thromboses (newborn)
 - Nutcracker syndrome
Hematuria: Evaluation
History

• Patterns/ Characteristics of hematuria
• Associated Symptoms
• Prior infections
• Past medical history
• Family history
• Medications
Physical Examination

- Vitals including BP
- Volume status
- Abdominal masses
- CVA tenderness
- GU exam
- Edema, arthritis
- Rashes
Hematuria: Evaluation

- Confirm dipstick on 2 subsequent visits
- Formal UA with microscopy
- Urine culture
- Parental UAs
- Urine Ca/Cr ratio (normal < 0.21)
- Sickle cell disease testing
- Kidney ultrasound
Urine Color and Results of Dipstick

• Positive dipstick
 – Myoglobinuria
 – Hemoglobinuria

• Negative dipstick
 – Medications (rifampin)
 – Dyes (beets)
 – Metabolites (uric acid crystals)
Hematuria + Proteinuria = Glomerular Disease

- History and physical (HTN, edema)
- UA with microscopy
- Serum chemistries, CBC, C3, C4, ANA
- Renal ultrasound
- Referral to Nephrology
- Kidney biopsy (unless post-infectious GN suspected)
Hematuria: Evaluation

- Renal biopsy: not necessary in most cases; consider if:
 - Other signs of nephritis (proteinuria)
 - Positive ANA, persistently low C3
 - Gross hematuria > 2 weeks
 - Microhematuria > 1 year
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercalciuria</td>
<td>15%</td>
</tr>
<tr>
<td>Benign familial hematuria</td>
<td>15%</td>
</tr>
<tr>
<td>IgA nephropathy</td>
<td>10%</td>
</tr>
<tr>
<td>Acute glomerulonephritis</td>
<td>5%</td>
</tr>
<tr>
<td>UTI</td>
<td>2%</td>
</tr>
<tr>
<td>Other specific diagnosis</td>
<td>3%</td>
</tr>
<tr>
<td>Unknown</td>
<td>50%</td>
</tr>
</tbody>
</table>
Proteinuria
A relative need a physical

- 16 year old athlete had 3+ protein in a routine physical examination
Questions?

- What is the etiology for the proteinuria?
- What kind of evaluation should be pursued?
- Is this an indication of a serious renal condition?
- Would you refer to a Pediatric Nephrologist?
Asymptomatic Proteinuria

Epidemiology

- Peaks in adolescence
- Up to 10% of 8-15 year olds have proteinuria on single urine sample
- Repeated testing reduces incidence to <1%
Proteinuria: Quantification

- Dipstick method
 - Semiquantitative
 - Negative to trace normal
 - 1+ approx. 30-100 mg/dl
 - 2+ approx. >200 mg/dl
Proteinuria: Quantification

- Sulfosalicylic acid test (SSA)
 - Add equal volume of SSA to urine
 - This precipitates protein
 - False positives
 - Contrast
 - Antibiotics

<table>
<thead>
<tr>
<th>Negative</th>
<th>No turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td>Slight turbidity</td>
</tr>
<tr>
<td>1+</td>
<td>Turbidity through which print can’t be read</td>
</tr>
<tr>
<td>2+</td>
<td>White cloud without precipitate</td>
</tr>
<tr>
<td>3+</td>
<td>White cloud with fine precipitate</td>
</tr>
<tr>
<td>4+</td>
<td>Flocculent precipitate</td>
</tr>
</tbody>
</table>
Proteinuria: Quantification

- **Timed urine collection**
 - 4mg/m²/hr normal (<200mg/d)
 - >40mg/m²/hr nephrotic range

- **Spot urine protein/Cr ratio (mg/mg)**
 - <0.2 normal
 - >3 nephrotic range
Mechanism of Proteinuria

- **Glomerular** (increased filtration)
 - Mild to massive
 - Predominantly albumin
- **Tubular** (decreased reabsorption)
 - Mild
 - Predominantly small plasma proteins
Patterns of Proteinuria

- Transient
- Orthostatic (postural)
- Fixed
 - Non-nephrotic
 - Nephrotic (usually with edema)
Transient Proteinuria

- Self-limited proteinuria seen with an underlying illness/stress
 - Febrile illness
 - Dehydration
 - Exercise
 - Seizure
 - Urinary tract infection
Orthostatic Proteinuria

- Accounts for majority of proteinuria found during well child care visits
- Benign condition in adolescents
- Proteinuria < 1 gram/24 hours (prot/Cr < 1)
- Proteinuria only seen in urine produced in upright position; urine produced when supine is negative for protein
- Etiology unknown
Fixed Proteinuria

- Proteinuria present at all times of the day and night
- Indicates kidney disease
 - Focal segmental glomerulosclerosis (FSGS)
 - Membranous nephropathy
 - Reflux nephropathy
 - Renal dysplasia
 - Polycystic kidney disease
Initial Evaluation of Proteinuria

- Hx & PE
- U/A: rule out hematuria
- (BUN & Cr)
- Rule out proteinuria at rest
 - If first morning UA is:
 - Negative for protein---Orthostatic proteinuria
 - No further evaluation in most cases!
 - Positive for protein---Fixed proteinuria, refer to Nephrology
Further Evaluation of Proteinuria

- Laboratory
 - CBC, BUN, Cr, albumin
 - Complement, ANA
 - Hepatitis B & C titers
- Consider renal imaging
- Consider renal biopsy
Clinical Scenarios
Case 1

- 10 year old female seen for URI symptoms and fever. Urine dipstick showed 2+ for blood and no protein. Microscopy 5 RBC per high power field
 - Family history unremarkable
 - Physical examination
 - Repeat urines x2 negative for blood
Case 1

- Diagnosis
 - Transient hematuria otherwise healthy
- Follow up
 - Reassurance to the patient and family
Case 2

- 6 year boy with persistent microscopic hematuria. No proteinuria

Family history: Several males with deafness and renal failure

Physical examination: normal

Laboratory evaluation: Urinalysis 15-20 RBC
Negative for protein
Case 2

- Diagnosis: Alports syndrome
- Management: referral to Pediatric nephrology
- Long term follow up with risk to develop renal failure
Case 3

- 8 yrs old female with dysuria and frequency
- Urine 1+ blood, 5 RBC per high power field
- Urine culture negative
Case 3 Evaluation

• Physical examination: normal
• Family history: Mother has kidney stones
• Calcium creatinine ratio 0.4
Case 3

- Diagnosis
 - Hypercalciuria
Case 3

• Management
 – Refer to Pediatric Nephrologist
 – 24 hour urine collection
 – Increased fluid intake, Decreased sodium in diet
 – Consider thiazides if patient develops kidney stones
Case 4

• 10 year old with brown colored urine for 2 days
• UA showed 3+ blood, 2+ protein
Evaluation

- Oliguria, periorbital edema, weight gain
- BP 145/95
- Urine microscopy
- Cr 1.8, C3 15, ASO 500
Diagnosis

Post Streptococcal Glomerulonephritis
Management

• Immediate referral to a Pediatric Nephrology Service
 – Hypertension
 – Electrolytes abnormalities
 – Fluid overload
 • Diuretics
Case 5

- 16 year old athlete had 3 + protein in a routine physical examination
Evaluation

- Normal physical examination
- First morning urine
 - Trace protein
 - Urine prot/creat ratio 0.12
Diagnosis

Orthostatic proteinuria
Management

• Conservative follow up
• Obtain first morning urine for future urine evaluations
Case 6

- 15 year old female with 4+ protein detected during a routine physical examination
Evaluation

- Occasional headaches
- BP 136/90. No evidence of edema
- First morning urine
 - 4+ protein
 - Urine prot/creat ratio 3.0
 - Cr 1.9 mg/dL
Diagnosis

- Nephrotic range proteinuria
 - Rule out Focal Segmental Glomerulosclerosis
Management

- Referral to Pediatric Nephrologist
- Renal Biopsy
- Immunosuppressive therapy
- Additional therapy
 - ACE/ARB
 - Diuretics
Hematuria

- Positive dipstick, > 5 RBC/HPF
- Hematuria resolves in most cases
- Patients with hematuria and proteinuria or gross hematuria require further evaluation
Proteinuria

- ≥ 1+, Protein/Creatinine ratio > 0.2
- In most cases, proteinuria is transient or orthostatic
- Nephrotic range proteinuria warrant further evaluation to rule out glomerular disease
Two principles that might apply to your practice

• Repeat urine studies twice in pts with isolated microscopic hematuria prior to considering more extensive evaluation
• Consider to obtain a first morning urine for protein/creatinine ratio in children with isolated asymptomatic proteinuria
References

4. Lunn A, Forbes TA. Haematuria and Proteinuria in childhood. Paediatrics and child health (2012); 315-321
The Nutcracker Syndrome

Normal

Renal Vein Compression

SMA

Left renal vein

Ao

Ovarian / testicular vein

SMA

Left renal vein

CCF ©2010 Pancoast