The LSU School of Medicine Alumni Association celebrated the Purple & Gold Gala on Saturday, October 11, 2014, at the Hyatt Regency New Orleans. Silent and Live Auctions featured artwork, sports items and vacation packages. Entertainment was provided by The Topcats. Photographs from the Gala are featured on the next three pages.

Standing, left to right, Mihran Naljayan, M.D., and Cristin Clement. Seated, left to right, Gerald Berenson, M.D.; Julia Sanders; and Bo Sanders ('64)

Joyce Leonard and Jim Leonard ('63)

left to right, Al Copeland, Jr., and Larry Hollier ('68)

left to right, Nicolas Bazan, M.D., Ph.D.; Haydee Bazan, Ph.D.; and Steve Nelson, M.D., Dean, LSU School of Medicine
Purple & Gold Gala 2014

PHOTO, LEFT
Terry Soileau and Jay Soileau ('83)

PHOTO, RIGHT
Amanda Martin and Aaron Martin ('06)

left to right, Felton Winfield ('94), Danielle Winfield, Troylynn Maupin, and Robert Maupin, M.D.

Jennifer Peltier and Henry Peltier ('90)

left to right, Robert Batson ('72); Susan McSherry, M.D.; Beverly Jakes; Brian Jakes, Sr.
Purple & Gold Gala 2014

PHOTO, RIGHT
left to right, Margaret Morrow, Robert Morrow ('69), Anne Monlezun, Lee J. Monlezun ('69)

Ron Gardner, Vice Chancellor for Community and Security Affairs, and Cynthia Gardner

PHOTO, RIGHT
left to right, Rene deBoisblanc ('74), Liz deBoisblanc, Barbara Fredericksen, and Ben deBoisblanc ('81)

left to right, Janine Parker ('86), Samantha Parker (L2), Matthew Berlinger (L3), and Abhita Reddy (L3)

left to right, Annie Harding, Kelsey Bradbury, and Chloe Renshaw
Means to free immune system to destroy cancer identified

Research led by Paulo Rodriguez, PhD, an assistant research professor of Microbiology, Immunology & Parasitology at LSU Health New Orleans’ Stanley S. Scott Cancer Center, has identified the crucial role that an inflammatory protein known as Chop plays in the body’s ability to fight cancer. Results demonstrate, for the first time, that Chop regulates the activity and accumulation of cells that suppress the body’s immune response against tumors. The LSU Health New Orleans research team showed that when they removed Chop, the T-cells of the immune system mounted an effective attack on the cancer cells. These findings reveal Chop as a target for the development of new immunotherapies to treat cancer. The research is described in a paper published online September 18, 2014, in Immunity, a Cell Press journal.

“Although we know what MDSCs do, very little has been known about what governs how they function,” notes Dr. Paulo Rodriguez, assistant research professor of Microbiology, Immunology & Parasitology at LSU Health New Orleans’ Stanley S. Scott Cancer Center. “This has limited the development of strategies to block the harmful activity of MDSCs.”

The LSU Health research team discovered that the stress sensor C/EBP-homologous protein (Chop) regulates the function of MDSCs. They learned how Chop is distributed within the tumor environment in different types of cancer. They also determined how Chop controls tumor growth. The team confirmed their findings by deleting Chop and studying the effect. They found that the absence of Chop not only reduced the ability of MDSCs to inhibit T-cells and suppress immune response, but also boosted the effectiveness of treatment.

“Our data demonstrate the central role of Chop in MDSCs’ suppressive activity and suggest the feasibility of overcoming it by blocking Chop,” concludes Dr. Rodriguez.

The LSU Health New Orleans research team also included Drs. Paul Thevenot, Rosa Sierra, Patrick R aber, Amir Al-K hami, Jimena Trillo-Tinoco, Parisa Zarreii, Augusto O choa, Yan Cui and Luis Del V alle from its Stanley S. Scott Cancer Center and departments of Microbiology, Immunology & Parasitology and Pediatrics.

The research was supported in part by National Institutes of Health (NIH) grant.

A key to preventing blindness and stroke devastation discovered

Research led by Nicolas Bazan, MD, PhD, Boyd Professor, Ernest C. and Yvette C. Villere Chair of Retinal Degeneration Research, and Director of the Neuroscience Center of Excellence at LSU Health New Orleans, has discovered gene interactions that determine whether cells live or die in such conditions as age-related macular degeneration and ischemic stroke. The paper is published online in Cell Death & Differentiation, a Nature journal at http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014233a.html.

Dr. Bazan and his research team discovered N europrotectin D1 (NPD1), which is made from the essential fatty acid, docosahexaenoic acid (DHA). Previous work showed that while it protected cells, the molecular principles underlying this protection were not known.

“During the last few years, my laboratory has been immersed in studying gene regulation,” Dr. Bazan says. “We have uncovered a novel control that makes definitive decisions about whether a retina or brain cell will survive or die when threatened with disease onset. The gene mechanism that we discovered is the interplay of two genes turned on by the messenger N europrotectin D1.”

The research team worked with human RPE cells and an experimental model of ischemic stroke. They discovered novel mechanisms in cells with the ability to activate pathways that crosstalk one to another and then assemble consolidated responses that decide cell fate. The researchers found that the powerful messenger, NDP1, is produced on-demand in the brain and retina and that it elicits a network of positive signals essential for the well-being of vision and cognition. They showed that NDP1 bioactivity governs key gene interactions decisive in cell survival when threatened by disease or injury. They demonstrated that not only does NDP1 protect photoreceptors, but it also promotes remarkable neurological recovery from the most frequent form of stroke in humans.

In addition to Dr. Bazan, the LSU Health New Orleans Neuroscience Center research team included Drs. Jorgelina M. Calandria, Aram Asatryan, Veronica Balaszczuk, Eric Kott, Bok K yoo Jun, Pranab K. Mukherjee and Ludmila Belayev.

This work was supported by National Institutes of Health (NIH) – grants R01 EY005121 (National Eye Institute) and P30 GM103340 (National Institute of General Medical Sciences) – and by the Eye Ear Nose and Throat Foundation of New Orleans, LA.
Cardiovascular Center of Excellence receives grant

The newly created Mikie Mahtook Foundation has selected the LSU Health New Orleans Cardiovascular Center of Excellence as its first grant recipient. Mikie Mahtook, LSU baseball champion now a Tampa Bay Rays outfielder, presented a $5,000 check to David Lefer, PhD, Director of the LSU Health New Orleans Cardiovascular Center of Excellence, at the Foundation’s kickoff event on January 31, 2015. The event was hosted by LSU coaching legends Skip Bertman and Paul Mainieri.

“We are so honored to be recognized by the foundation created in the memory of Mikie Mahtook’s father,” notes Dr. Lefer. “We share a common goal – preventing heart disease through education and research. We will use the funds to advance training of future cardiologists in the Cardiology Fellowship Program at the LSU Health New Orleans School of Medicine.”

The LSU Health New Orleans Cardiology Fellowship Program provides three additional years of training beyond residency to develop the outstanding clinical skills that translate to patient care of the highest quality. The Cardiovascular Center of Excellence at Louisiana’s flagship health university is a nationally and internationally recognized center in cardiovascular research and medicine.

The Mikie Mahtook Foundation is a nonprofit organization dedicated to the education and prevention of heart disease, as well as other charitable causes. The Foundation was established in 2014 by professional baseball player and LSU College World Series Champion Mikie Mahtook in honor of his father Michael, who died of heart disease at the age of 32 when Mikie was only four years old. To learn more, visit http://www.mahtookfoundation.org.

Researchers find novel compound that switches off epilepsy development

Researchers at the LSU Health New Orleans Neuroscience Center of Excellence have found that a novel compound they discovered helps curtail the onset and progression of temporal lobe epilepsy. The finding is published online in the journal PLOS ONE, available at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116543

Working in a mouse model, the research team led by Drs. Nicolas Bazan, Boyd Professor and Director of the LSU Health New Orleans Neuroscience Center of Excellence, and Alberto Musto, Assistant Professor of Research, Neurosurgery and Neuroscience, found that brief, small electrical microbursts, or microseizures, occur before the onset of clinical recurrent seizures. When they systemically administered Neuroprotectin D-1 (NPD1), the researchers discovered that NPD1 regulated these bursts of brain electrical activity that not only reduced the aberrant brain cell signaling leading to severe generalized seizures, but also spontaneous recurrent seizures. Neuroprotectin D-1, discovered in the Bazan lab, is derived from docosahexaenoic acid (DHA), an essential omega 3 fatty acid found in fish oil.

“We have searched for years to unravel the significance of the mechanism by which DHA is released in the brain at the onset of seizures,” notes Dr. Bazan. Called the “Bazan Effect” in the literature, with the discovery of NPD1, another piece of the puzzle fell into place.

“These observations will contribute to our ability to predict epileptic events, define key modulators of brain circuits, especially after a brain injury, and provide potential biomarkers and therapeutic approaches for epileptogenesis,” says Dr. Musto.

The research team also included Chelsey P. Walker from the LSU Health New Orleans Neuroscience Center of Excellence and Nicos A. Petasis from Loker Hydrocarbon Research Institute at the University of Southern California, Los Angeles.

The research was supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health.
Dr. Joseph Ortenberg, Professor of Urology and Pediatrics at LSU Health Sciences Center New Orleans School of Medicine, has been elected president of the American Association of Pediatric Urologists.

Dr. Jayne Weiss, Professor and Chair of the LSU Health New Orleans Department of Ophthalmology, has been appointed Chair of the Ophthalmic Devices Panel by the Food and Drug Administration (FDA) Commissioner - for the second time. Dr. Weiss, who is also the recipient of the Herbert E Kaufman, MD, endowed Chair in Ophthalmology, Professor of Pathology and Pharmacology, and Director of LSU Eye Center at LSU Health New Orleans, will serve a four-year term.

The Ophthalmic Devices Panel reviews and evaluates data concerning the safety and effectiveness of marketed and investigational devices for use in the eye and makes appropriate recommendations to the Commissioner of Food and Drugs. First-of-a-kind medical devices and applications that raise new issues of safety and effectiveness are reviewed by the panel. Devices that are not approved cannot be sold in the United States.

The Food and Drug Administration selects nationwide experts in their fields with experience interpreting and analyzing detailed scientific data with understanding of the public health significance. The panel consists of seven voting members, one nonvoting consumer representative and one nonvoting industry representative.

William Gallaher, PhD, Emeritus Professor of Microbiology, Immunology & Parasitology at LSU Health Sciences Center New Orleans School of Medicine, has discovered a fragment of an Ebola virus protein. The findings were published online January 20, 2015, in the open access journal, Viruses, available at http://www.mdpi.com/1999-4915/7/1/285.

Following his discovery, Dr. Gallaher contacted Robert Garry, PhD, Professor of Microbiology and Immunology at Tulane University School of Medicine, a longtime collaborator, to produce a structural model and potential mechanism of action. The results of that modeling work are being made public only after acceptance into a special issue on “Advances in Ebola virus, Marburgvirus, and Cuevavirus Research 2014-2015” in Viruses.

He and his colleagues are also developing inhibitors of the toxic mechanism, which may ultimately be useful as drugs, should a role for Delta peptide in Ebola virus disease become established by future studies.

The work was supported, in part, by grants from the National Institutes of Health.

MEDICAL ALUMNI REUNIONS 2015
for the following classes: ’50, ’55, ’60, ’65, ’70, ’75, ’80, ’85, ’90, ’95, ’00, ’05
June 5 and 6, 2015
New Orleans Hilton, Poydras at the River

To volunteer to help with your 2015 reunion, contact the Office of Alumni Affairs at (504) 568-4009 or e-mail: ROAR@lsuhsc.edu

See you there!

Nancy Buccola, MSN, APRN, PMH CNS-BC, CNE, Assistant Professor of Clinical Nursing at LSU Health Sciences Center New Orleans School of Nursing, contributed samples used in a study reporting shared genetic risk factors and common pathways for schizophrenia, major depression and bipolar disorder. The results are published online January 19, 2015, in Nature Neuroscience.

Buccola collected samples as part of the Molecular Genetics of Schizophrenia (MGS) study, part of genome-wide association study data being analyzed by the Psychiatric Genomics Consortium (PGC), a large international collaboration. Researchers examined data from 60,000 participants, including people with schizophrenia, bipolar disorder, major depression, autism spectrum disorders and attention deficit hyperactivity disorder as well as healthy individuals, to identify biological pathways for psychiatric disorders. The findings confirm known mechanisms and suggest several new insights into the development of psychiatric disorders.

Nancy Buccola, MSN, APRN, PMH CNS-BC, CNE, Assistant Professor of Clinical Nursing at LSU Health Sciences Center New Orleans School of Nursing, contributed samples used in a study reporting shared genetic risk factors and common pathways for schizophrenia, major depression and bipolar disorder. The results are published online January 19, 2015, in Nature Neuroscience.

Buccola collected samples as part of the Molecular Genetics of Schizophrenia (MGS) study, part of genome-wide association study data being analyzed by the Psychiatric Genomics Consortium (PGC), a large international collaboration. Researchers examined data from 60,000 participants, including people with schizophrenia, bipolar disorder, major depression, autism spectrum disorders and attention deficit hyperactivity disorder as well as healthy individuals, to identify biological pathways for psychiatric disorders. The findings confirm known mechanisms and suggest several new insights into the development of psychiatric disorders.

Nancy Buccola, MSN, APRN, PMH CNS-BC, CNE, Assistant Professor of Clinical Nursing at LSU Health Sciences Center New Orleans School of Nursing, contributed samples used in a study reporting shared genetic risk factors and common pathways for schizophrenia, major depression and bipolar disorder. The results are published online January 19, 2015, in Nature Neuroscience.

Buccola collected samples as part of the Molecular Genetics of Schizophrenia (MGS) study, part of genome-wide association study data being analyzed by the Psychiatric Genomics Consortium (PGC), a large international collaboration. Researchers examined data from 60,000 participants, including people with schizophrenia, bipolar disorder, major depression, autism spectrum disorders and attention deficit hyperactivity disorder as well as healthy individuals, to identify biological pathways for psychiatric disorders. The findings confirm known mechanisms and suggest several new insights into the development of psychiatric disorders.

Nancy Buccola, MSN, APRN, PMH CNS-BC, CNE, Assistant Professor of Clinical Nursing at LSU Health Sciences Center New Orleans School of Nursing, contributed samples used in a study reporting shared genetic risk factors and common pathways for schizophrenia, major depression and bipolar disorder. The results are published online January 19, 2015, in Nature Neuroscience.
Honor Roll 2014 / LSU Medicinews Spring '15— Combined Edition

Grant awarded to provide early data on cancer in children

The Centers for Disease Control and Prevention awarded LSU Health New Orleans School of Public Health's Louisiana Tumor Registry a $1.3 million grant over five years to more rapidly find and report cases of cancer in children and young adults. One of only eight state registries to successfully compete for this funding, the award will support efforts to increase the availability of these data for surveillance and research activities at the local, state, and national level.

This continuation funding will enhance and build the existing infrastructure of the LSU Health New Orleans Louisiana Tumor Registry to capture these data more quickly and promote their use for research and cancer control programs. LSU Health New Orleans will enhance its cancer data on children and young adults by linkages with secondary data sets, providing a more robust research resource.

Key partners include the LSU Health New Orleans Pediatric Cancer Program at Children's Hospital, where about 50% of new pediatric cancer cases are diagnosed and/or treated; major medical centers that treat pediatric cancers; St. Jude-affiliated clinics throughout Louisiana; and out-of-state children's hospitals.

"The data obtained from this award provide a unique opportunity for research to better understand why survival of a particularly vulnerable subgroup of adolescents and young adults has not improved over the last two decades and to change that," concludes grant principal investigator Dr. Vivien Chen, LSU Health New Orleans Professor of Epidemiology. Dr. Chen led the Registry for many years and secured its designation as one of only 18 registries in the National Cancer Institute's SEER Program.