Interactions of Elovanoids with G-Protein Coupled Receptor 120 in Retinal Pigment Epithelial Cells

Hamza Aallouche
Gethein Andrew Nicolas G. Bazan
Neuroscience Center of Excellence, School of Medicine
LSU Health New Orleans, New Orleans LA

Abstract

Dry age-related macular degeneration (AMD) is caused by the chronic degeneration of the macula due to drusen deposits in the retina and is the most common cause of irreversible vision loss in people over the age of 50. The cause of dry AMD is still unknown but may be caused by the depletion of protective lipids in the retina, which increases oxidative stress in the retina. Treatments for dry AMD are limited but recently discovered neuroprotective lipid mediators, Elovanoids (ELVs), may be useful in combating AMD. ELVs are very long-chain polyunsaturated fatty acids (VLC-PUFAS) that have been hydroxylated to have two alcohol groups. ELVs have been found to protect Retinal Pigment Epithelial (RPE) cells in the retina but the mechanism of this protective effect is unknown.

We are investigating the mechanism of Elovanoid’s protective effect on RPE cells using immunocytochemistry (ICC) and Incucyte live cell imaging. Our experiment elaborates whether other ELVs interact with G-Protein Coupled Receptor 120 (GPR120) using different visualization methods in RPE cells. 8-well chambers were prepared at a density of 15k cells/well. 2 wells were supplemented with ELV-32, 2 were given GPR120 antagonist (6K1764), and 2 were given GPR120 agonist (GSK137647). ICC was performed to visualize GPR120 surface expression after varying levels of stimulation with each ligand. Incucyte live cell imaging was used to test the impact of ELVs on RPE cells and the lipid’s ability to protect or prevent damage under uncompensated oxidative stress (UOS). 96 well plates of cells were given varying concentrations of hydrogen peroxide while also given ELVs, known antioxidants, Omega-3 fatty acids, and controls to investigate the effect of ELVs on cells with varying levels of uncompensated oxidative stress. The same treatment was used on GPR120 silenced, non-transfected, and negative control RPE cells line to investigate and compare results to elucidate the role of ELVs on RPE cells in inactivated GPR120. The purpose of these experiments is to determine if ELVs influence the activation or inhibition of GPR120 to aid their protective abilities in RPE cells and determine if GPR120 is pro- or anti-apoptotic. We are investigating GPR120’s role in RPE cell protection and if the receptor binds ELVs to better protect against UOS.

Hypothesis

• Overall Hypothesis: Elovanoids interact with the G-Protein Coupled Receptor-120 (GPRC120) in RPE cells
• Aim 1) Elovanoids act as agonists to GPR120
• Aim 2) Elovanoids protect RPE cells from cell death during excessive oxidative stress.

Methods

Inucyte – Live Cell Imaging

* 8 well chambers at a cell density of 15K in 250 μL
* At 4C for a 21 hours

Immunocytochemistry (ICC)

• 96 well chambers for different H2O2 concentrations prepared at 20K cell concentration with non-transfect, siRNA, and GPR120 expressing cells
* 2 controls, 2 UOS, 200nm 32, 200nm 34, 400 nm 32, 400 nm 34, 80 nm DHA, Vitamin C, and known agonists and antagonists of GPR120 were given for 1600 peroxide concentration.
* For 1200 and 2000 concentration H2O2 ELV 32 200, ELV34 200, 200 nm DHA, Vitamin C, FFA-32, FFA-34, 2 UOS, and 2 control, and control and UOS non-transfected.

Results

Conclusions

• 96 well chambers for 3 different H2O2 concentrations were prepared at 20K cell concentration with non-transfect, siRNA, and GPR120 expressing cells
• 2 controls, 2 UOS, 200nm 32, 200nm 34, 400 nm 32, 400 nm 34, 80 nm DHA, Vitamin C, and known agonists and antagonists of GPR120 were given for 1600 peroxide concentration.
• For 1200 and 2000 concentration H2O2 ELV 32 200, ELV34 200, 200 nm DHA, Vitamin C, FFA-32, FFA-34, 2 UOS, and 2 controls, and control and UOS non-transfected.

References


This research project was supported through the LSU Health Sciences Center, School of Medicine.