Ancient Intruders: Human Endogenous Retroviruses (HERVs) in Glioblastoma

Abigail Bendixsen, Diana Polania, PhD, Cecilia Vittori, PhD, Francesca Peruzzi, PhD, Krzysztof Reiss, PhD, Monika Rak, PhD
Louisiana State University Health Sciences Center

Introduction

Human Endogenous Retroviruses (HERVs):
- ancient retroviral sequences that integrated into the primates’ genome millions of years ago
- account for about 8% of the human genome
- expressed in various human cancers
- over evolutionary time have become highly mutated
- mostly no longer encode functional genes

HERV-K:
- the most recently integrated HERV family
- contains intact open reading frames and expresses viral proteins

Glioblastoma Multiforme (GBM):
- one of the most aggressive human cancers
- current standard of care: surgery followed by radiation and Temozolomide (TMZ)
- limited treatment options, especially for recurrent tumors resistant to TMZ

Rationale:
- Expression from HERV loci is linked to cancer stemness and drug resistance.
- Deciphering connections between HERV-K and GBM development, progression, stemness, and drug resistance could prompt new therapeutic strategies.

Objectives:
- Characterize HERV-K expression in multiple human GBM cell lines compared to normal human astrocytes (NHA)
- Compare HERV-K expression in GBM cell lines sensitive and resistant to TMZ

Materials and Methods

<table>
<thead>
<tr>
<th>Image</th>
<th>Cell Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMZ Sensitive</td>
<td>Normal Human Astrocytes</td>
</tr>
<tr>
<td></td>
<td>U87-MG</td>
</tr>
<tr>
<td></td>
<td>LN229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image</th>
<th>Cell Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMZ Resistant</td>
<td>U118-MG</td>
</tr>
<tr>
<td></td>
<td>T98-G</td>
</tr>
<tr>
<td></td>
<td>GBM-12 [Spheres]</td>
</tr>
</tbody>
</table>

RT-qPCR
Reverse Transcription Qualitative Polymerase Chain Reaction (RT-qPCR): detection and quantification of specific RNA

Western Blot
Detection of specific proteins

Immunofluorescence
Visualization of cell components with combinations of specific antibodies labeled with fluorophores

Results: RT-qPCR

- GBM cell lines express HERV-K RNA at lower levels than NHA.
- HERV-K expression varies among GBM cell lines.
- Differences in HERV-K RNA do not follow a consistent pattern between TMZ sensitive and resistant cells.

Results: Immunofluorescence

- HERV-K Gag protein subcellular localization shows no differences between tested cell lines.

Results: Western Blot

- HERV-K Gag protein is detected in all cell lines and presents lower levels in GBM cell lines compared to NHA.
- HERV-K Env is not observed at the protein level.
- Media glucose concentration does not affect HERV-K Gag protein level.

Summary

- GBM cell lines show less HERV-K expression than NHA.
- Gag is observed at both the RNA and protein level.
- Env is present only at the RNA level.
- Media glucose level has no observable effect on HERV-K expression.
- HERV-K expression varies among GBM cell lines.
- Differences in HERV-K RNA do not follow a consistent pattern between TMZ sensitive and resistant cells.

Conclusions

- Our data indicates that HERV-K may be involved in GBM biology and suggests the potential use of HERV-K expression in diagnostic and/or therapeutic strategies.

Future Directions

- The contribution of HERV-K expression to cell phenotype will be further addressed with a CRISPR gRNA multiplexing method to induce or silence HERV-K expression.