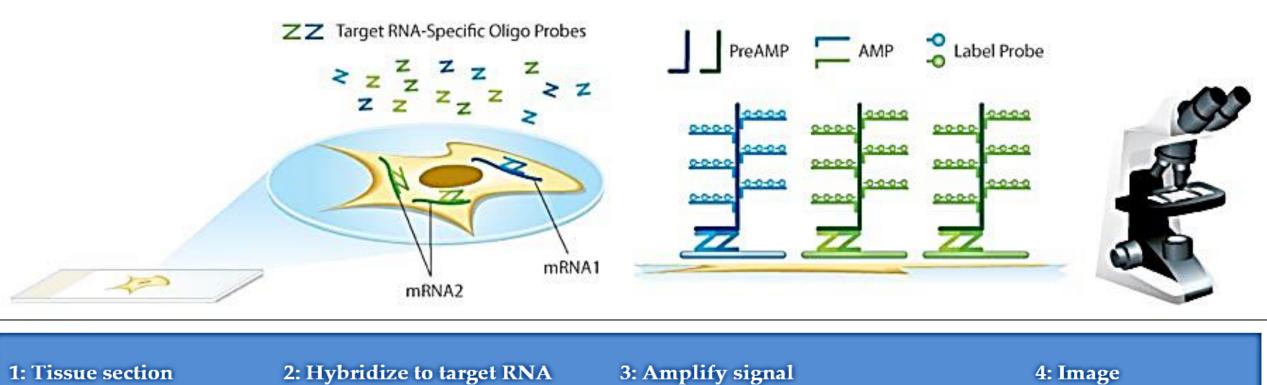
Pro-homeostatic Astrocyte and Microglial Genes in Ipsilesional Ischemic Core and Penumbra in Rats after Ischemic Stroke: Neuroprotection by NPD1 plus RvD1.

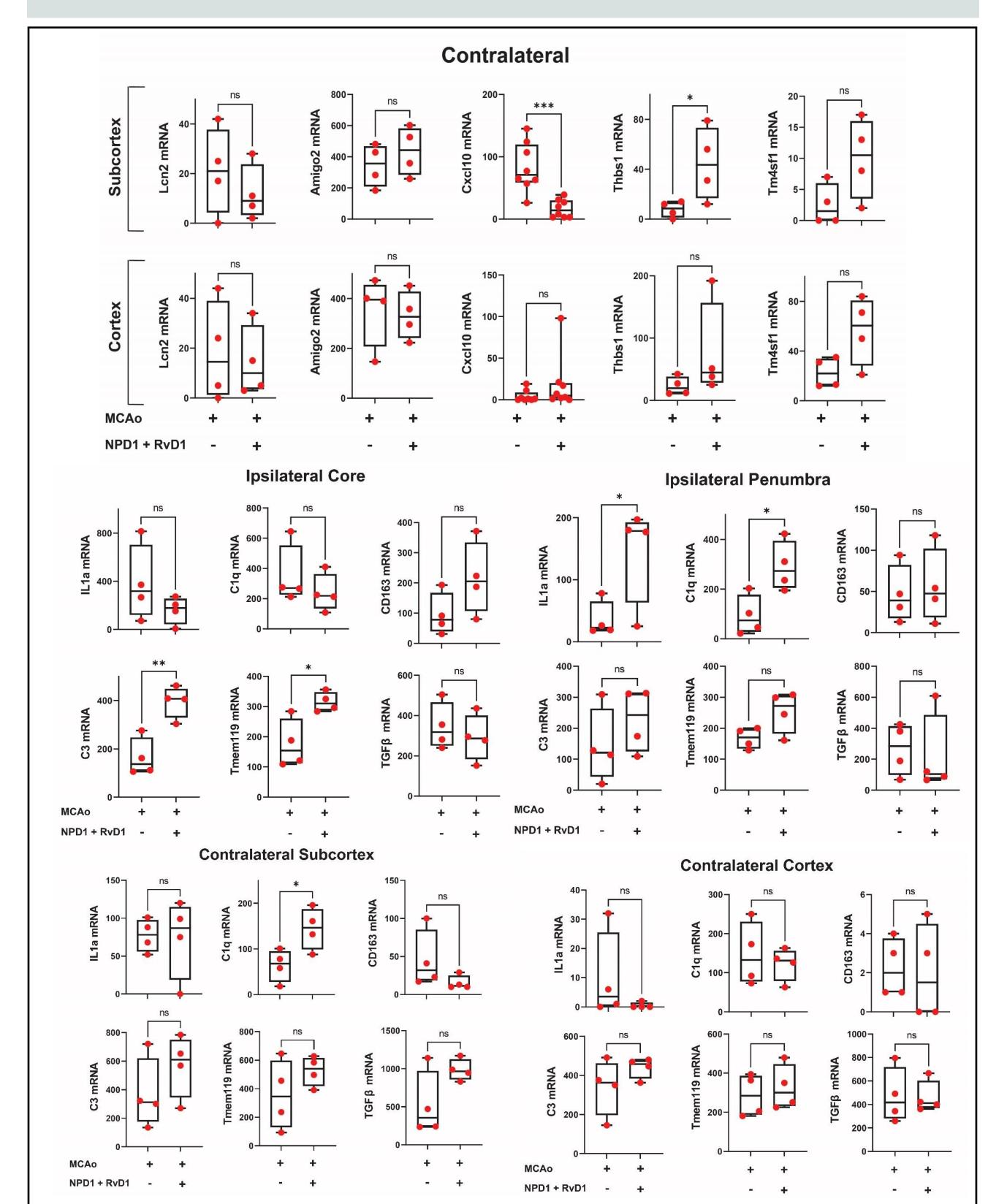
NEW ORLEANS School of Medicine Neuroscience Center of Excellence

Jude A. Kannankeril^{1,2}, Geoffrey Y. Lazartigues^{1,3}, Jeff X. Ji¹, Abhilash Ponnath¹, Surjyadipta Bhattacharjee¹, and Nicolas G. Bazan¹

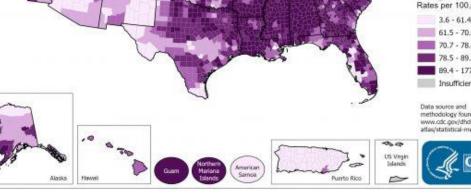
LSU Health, New Orleans, School of Medicine, Neuroscience Center of Excellence¹, Louisiana School for Math, Science, and the Arts², Benjamin Franklin High School³.


Introduction

Background:


- Stroke is the second leading cause of death worldwide, causing **1 in 4** people over the age of 25 to have a stroke
- Every year, more than **795,000** people in the United States, suffer a stroke
- About 610,000 of these cases are new strokes About **185,000** strokes – nearly

1 in 4 - are in people who have


Methods – RNA FISH (RNAScope)

Results

had a previous stroke In 2021, **1 in 6** deaths from cardiovascular diseases was due to stroke Every 40 seconds, someone in

- the United States has a stroke
- About 87% of all strokes are ischemic strokes, in which blood flow to the brain is blocked
- Stroke-related costs in the United States came to nearly \$56.5 billion between 2018 and 2019
- Stroke is a leading cause of serious long-term disability and reduces mobility in more than **50%** of stroke survivors in **age 65 and older**
- Currently, there is no effective neuroprotective therapy available to mitigate ischemic stroke
- **Tissue plasminogen activator (tPA)** is the only FDA approved treatment for stroke
- It has been previously shown that **Omega-3 polyunsaturated fatty acids** (PUFAs) have positively impacted cerebrovascular diseases, including carotid stenosis, vertebral and intracranial stenosis, aneurysms, and vascular malformations

By limiting inflammatory responses and promoting specific mechanisms to return to homeostasis, certain endogenous protective docosanoids, Neuroprotection D1 (NPD1) and **Resolvin D1 (RvD1)**, have proven to help protect against cerebral ischemia in a rat model of middle cerebral occlusion (MCAo) (Reid *et al*, PMID: 37270727)


Objective and Hypothesis: Recent results from the lab using bulk

DHA 17S-HpDHA (16S,17S)-Epoxy-DHA 7S,8S)-Epoxy-17S-HDHA 17 10^(S) _____ RvD1 **T2WI MRI** Vicrofluidic RT-qPCR

Differential gene expression

Start with properly	Hybridize multiple sets of	Use up to four signal amplification	Visualize target RNA
prepared tissue sections	gene-specific probe pairs to	systems to detect multiple target RNAs.	using a standard
and pretreat to allow	target mRNAs.	Hybridize probes to a cascade of signal	fluorescent
access to target RNA.		amplification molecules, culminating in	microscope.
		binding of dye-labeled probes visible in	
		different fluorescent channels.	

- RNAscope is a multiplex fluorescent in situ hybridization (FISH) that allows simultaneous signal amplification and background suppression to achieve exceptional sensitivity allowing for single-molecule visualization of RNA targets while preserving tissue morphology and spatial context
- Target RNAs are hybridized to single stranded DNA "z-probes" composed of a complementary ~20 nucleotide sequence to the RNA of interest, a spacer sequence, and a **14-nucleotide tail** region. 28-nucleotide re-amplifier oligos bind to the tail region of the z-probe pairs bound to adjacent sequences in the RNA, which are then bound to amplifiers that are labeled with horseradish peroxidase (HRP) enzyme molecules
- **Tyramide-conjugated fluorophores** are added, leading to HRP enzymatic conversion of tyramide into a highly oxidized intermediate which covalently binds to proteins near the HRP label, thus depositing a large number of detectable fluorophores – 20 z pairs x 20 Amplifiers x 20 labels = 8000 labelled molecules per 1 kb region of the gene
- Multiple RNA targets can be labeled with the use of detection probes in different channels with distinct tail sequences which allow for the generation of unique amplification trees for each target. Each target/probe is then sequentially developed using tyramide signal amplification (TSA) by using channel specific HRP labels and conjugated dyes Vivid 520, 570, and 650 for channels C1, C2, and C3 respectively. At the end of signal development, sections are counterstained with **DAPI**

extraction and high throughput RNA using Fluidigm Biomark HD qPCR system, showed NPD1+RvD1 mediated stroke penumbra protection ischemic increases expression of pro-homeostatic microglia and astrocyte genes

We hypothesized that we would see similar transcriptomic profiling in ischemic core and penumbra brain regions in situ by analyzing through **RNA fluorescence** *in situ* hybridization (FISH)

IL-1β ↑ TNF-α↓ STAT3 ↓ Cd86↓ IL-1a↓ Tmem119 Fcrls † Cd68 † P2y12†

(STA)

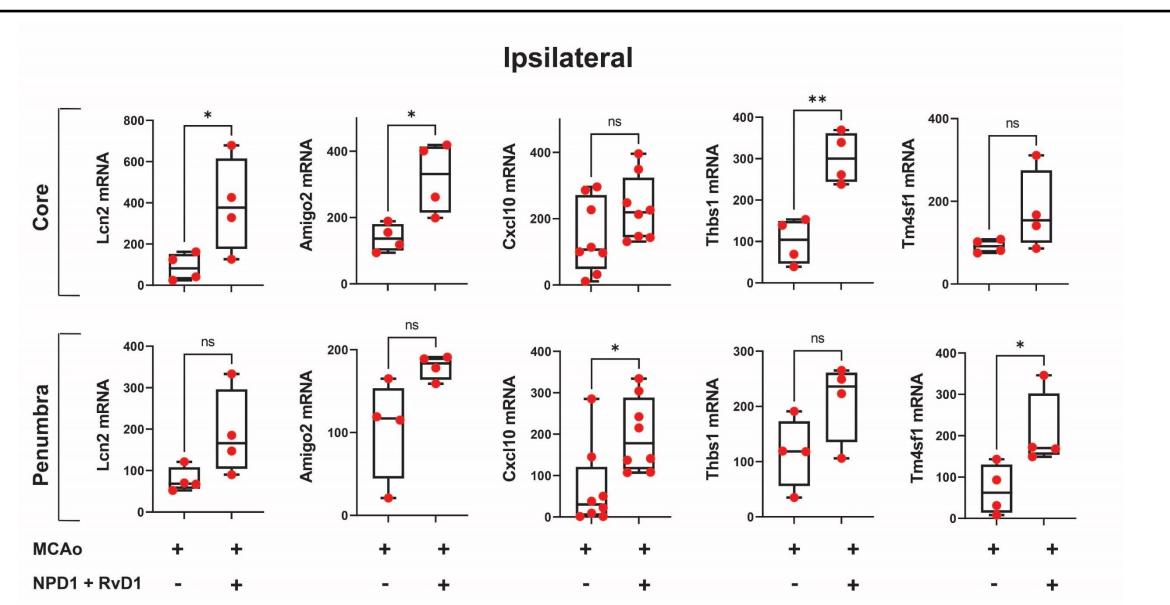
Lesion Volume Analysis

Methods – MCAo & Brain Slices

• Ischemic stroke was induced in rats using the transient middle cerebral artery occlusion (MCAo) for 2h, 1h after, rats were re-anesthetized and treated with either vehicle (0.9% saline) or NPD1 + RvD1 (Dose - 222 µg/kg body weight)

 24h later, rat was euthanized, and brain slices were flash-frozen in methyl butane pre-chilled with dry ice

 Brain sections were embedded with an Optimal Cutting Temperature (OCT) medium in a cryomold, and cryo-sectioned into 10-micron slices and placed onto positively charged Superfrostplus slides


 Slides were then fixed with neutral buffered formalin, followed by alcohol dehydration, and subjected to multiple RNAscope probes (for multiplexing), counterstained with DAPI, and coverslip mounted with Prolong Gold antifade mountant

DNA probes used for RNA-FISH experiments

Lcn2 – lipocalin2 (pan reactive astrocyte gene) Amigo2 – adhesion molecule with Ig like domain 2 (A1 neurotoxic gene) Cxcl10 – C-X-C motif chemokine ligand 10 (pan reactive astrocyte gene) *Thbs1* – thrombospondin 1 (A2 neuroprotective astrocyte gene) Tm4sf1 – transmembrane 4 L six family member 1 (A2 neuroprotective astrocyte gene)

IL1a – interleukin 1 alpha (M1 pro-inflammatory gene) C1q – complement (C1q) (central complement pathway gene) C3 – complement (C3) (central complement pathway gene) CD163 – CD163 molecule (M2 anti-inflammatory microglia gene) *Tmem119* – transmembrane protein 119 (resting/ Mo homeostatic microglia gene) $TGF\beta$ – transforming growth factor beta (M2 anti-inflammatory microglia gene)

Conclusion

- *Lcn2* lipocalin2 upregulated in ipsilateral core and penumbra
- Amigo2 upregulated in ipsilateral core and penumbra
- Cxcl10 upregulated in ipsilateral core and penumbra
- Thbs1 thrombospondin 1 upregulated in ipsilateral core
- *Tm4sf1* upregulated in ipsilateral core
- *IL1a* interleukin 1 alpha upregulated in ipsilateral penumbra
- C1q complement (C1q) upregulated in ipsilateral penumbra
- C3 complement (C3) upregulated in ipsilateral core

Most genes are not significant in either contralateral subcortex or cortex except Thbs1 and C1q

Our *in-situ* single molecular RNA FISH results confirm the previously reported results from the lab using bulk RNA extraction followed by high density quantitative PCR after subjecting rats to transient MCAo, followed by treatment with Docosanoids – NPD1 + RvD1

This is the first time that DNA probes were demonstrated to work for the groups of selected genes using RNA in situ hybridization, aiming to understand further the mediative and protective affects NPD1 and RvD1 have on the brain through analysis of neuroprotective and anti-inflammatory gene expressions in the ischemic core and penumbra

These observations uncover spatially distributed specific genes being expressed during neuroprotection elicited by the lipid mediators and will be important to guide potential therapeutics.

Slides were imaged and analyzed the data in Olympus Fluoview and Cellsens software followed by unbiased image analysis using FIJI ImageJ

Reid et al, PMID: 37270727

Bhattacharjee et al, PMID: 28959727

Bazan, PMID: 30244005

Stroke Facts, National Center of Statistics, CDC. https://www.cdc.gov/stroke/facts.htm

This research project was supported through the LSU Health Sciences Center, School of Medicine.