In Vitro Characterization of Oral Squamous Cell Carcinomas with Cell Migration

Alexandra Magee, Kelly Sherman PhD, Steve Scahill, Dennis Paul PhD

Xavier University of Louisiana, LSUHSC Department of Pharmacology

Introduction

As the 6th most common cancer, there are extremely high incidences of oral and pharynx cancer in Louisiana. Risk factors - tobacco use, excessive alcohol use, sun exposure, oral HPV, and poor nutrition - are omnipresent. In fact, oral and pharynx cancers have a reoccurrence rate of ~76% after two years. Metastasis is the development of secondary tumors in a separate location from the original tumor, but the origins and parameters of metastasis are poorly understood. Metastasis is the primary cause of death in most cases. The epithelial-mesenchymal transition (EMT) process has a major role in metastasis. EMT is the conversion of epithelial cells into mobile cells that can invade, resist stress, and disseminate. Cell motility and migration assays are a hallmark of the way metastasis is studied via cell culture. Cell signaling events cause various molecules to affect the rate of cell migration. For example, tumor necrosis factor-alpha (TNFα) is a cytokine produced during acute inflammation that participates in a cell signaling cascade that leads to necrosis or apoptosis. TNFα aids in cancer resistance and infections. Similarly, nerve growth factor beta is a protein that stimulates nerve growth and the differentiation of sympathetic and sensory neurons. Studies have shown that tumors may grow towards neurons/havers, so NGF-β is added to the cell medium to create a microenvironment mimicking an area with high nerve activity to determine if oral squamous cell carcinomas react. Tumor microenvironment, which includes cytokines TNFα and NGF-β, can influence cancerous development. Previous studies show the correlation between both inflammation and perineural invasion to cancer severity. In this experiment, a Wound Healing Assay is used as the primary technique to determine whether an inflammatory cytokine, TNFα, or neural signaling molecule, NGF-β, will affect the rate of motility in oral squamous cells. CAL-27, I hypothesized that the cells treated with TNFα will have a greater rate of motility than the cells without treatment, and I hypothesized that the cells treated with NGF-β will have a greater rate of motility than the cells without treatment.

Background

- Studies show that oropharynx tumors are linked to HPV infections, so tumors and cells are classified by HPV status. The HPV+ have a better prognosis. We thawed CAL-27, an HPV negative cell line, and UPC- SCC090, an HPV positive cell line.
- Inflammation is the immune response that cells emit after injury, stimulus, foreign substance, etc. The cells release cytokines and macrophages to mediate the current situation and prevent further damage.
- Epithelial-mesenchymal transition (EMT)
- TNF-α - a cytokine that is produced during acute inflammation that participates in the cell signaling cascade that leads to necrosis or apoptosis.
- NGF-β - a protein that stimulates nerve growth and the differentiation of sympathetic and sensory neurons.

Model System

In Vitro Cell Culture

CAL 27 - Epithelial squamous cell carcinoma, extracted from the middle of tongue, HPV negative

- 14.14ng/mL TNF-α – the concentration was previously used in various experiments
- 2ng/mL NGF-β – the concentration was taken from a published dose response curve

Experimental Design

- **Motility Rate of TNF-α treated CAL-27 cells Over Time Intervals**
- **Motility Rate of TNF-α treated CAL-27 cells Over 24hrs**

Results

- **Figure 1:** This graph shows the TNF-α-mediated motility rate of CAL-27 over multiple time intervals. There is no significance for the standard average of the mean in the motility rate between 0-6 hours or 6-18 hours. However, there is a trend in the 6-18 hour time point, suggesting more experimentation is needed for confirmation.

Conclusion & Future Experiments

- The data suggests that inflammatory mediators modulate the in vitro motility rate of oral cancer squamous cell lines. This correlates with previous research because nicotine, an inflammatory agent, is a very prevalent ingredient in tobacco products. Tobacco products are a major risk factor oropharynx tumors.
- At this concentration of NGF-β, there was no effect on motility over 24-hour period.
- Immunofluorescence for the receptors of NGF-β and Voltage-Gated Sodium Channels (VGSC)
- Wound Healing Assays with with different cytokines and immune molecules
- Concentration curve experiments to further characterize the effect of NGF-β on the cells

This research project was supported by Award Number: DBI-2051440 through the National Science Foundation (NSF), Research Experiences for Undergraduates (REU) Program