A Mitochondrial Uncoupler, BAM15, Inhibits Liver Tumor Promotion in the Context of a High Fat Diet Enriched in Saturated Fat

Theresa Nguyen\(^1\), Kim Pedersen\(^1\), Tomislav Jelesijevic\(^3\), Christopher Axelrod\(^2\), Elizabeth Zunica\(^2\), John Kirwan\(^2\), Martin Ronis\(^1\)

LSU Health Sciences Center, Department of Pharmacology\(^1\); Pennington Biomedical Research Center, Baton Rouge\(^2\); Department of Comparative Biomedical Studies, LSU School of Veterinary Medicine, Baton Rouge\(^3\)

Introduction

Liver cancer ranks as the third deadliest cancer globally and is on the rise due to the obesity epidemic. The incidence is higher in males than females. BAM15, a mitochondrial uncoupler, has demonstrated protective effects against weight gain in obesity models in mice. Our objective was to assess the effect of BAM15 on tumor promotion caused by a high saturated fat diet in mice. We also aimed to determine the role of PPARα, which is a transcription factor stimulating the expression of rate-limiting enzymes of fatty acid oxidation. Since bone marrow is enriched with adipocytes in adulthood, we finally assessed the role of BAM15 on bone turnover.

Methods

1.0 Knockout of PPARα

Gene expression was determined by PPARα KO. Weight loss of gonadal fat pads were not explained by changes in gene expression of BAM15.

Examples of livers with tumors:

- A large hepatocellular carcinoma
- Multiple small liver nodules

Knockout of PPARα

- Wild type (wt) C57BL/6J and PPARα knockout (KO) mice were injected intraperitoneally with 20 mg/kg diethyl nitrosamine (DEN) on postnatal day 13.
- From weeks 4-10, mice were fed a high saturated fat diet with cocoa butter as a saturated fat (CB diet).
- At 10 weeks of age, mice were either continued on the CB diet or were fed a CB diet supplemented with a 0.1% (w/w) BAM15.
- The mice were sacrificed at 30 weeks of age with recording of visible liver tumors and collection of serum and tissues.
- From the serum, severity of liver tumorigenesis was determined by ELISA of the tumor stem cell marker alpha-fetoprotein (AFP) and liver injury by a kinetic enzymatic assay of alanine transaminase (ALT).
- Serum markers for bone synthesis (Procollagen 1A1) and bone resorption (collagen crosslinks CTX-1) were assessed by ELISA.
- RNA was isolated from randomly selected subsets of mice and RNA quality was validated by TapeStation analysis.
- Gene expression was determined by qRT-PCR assays.

Results

Body weight

Body weight of mice fed a cocoa butter diet (CB), or a CB diet supplemented with BAM15 (BAM15) at sacrifice\(^1\).

Liver weight

Liver weight of mice fed a cocoa butter (CB) diet, or a CB diet supplemented with BAM15 (BAM15) at sacrifice\(^1\).

Gonadal fat pad weight

Gonadal fat pad weight of mice fed a cocoa butter (CB) diet, or a CB diet supplemented with BAM15 (BAM15) at sacrifice\(^1\).

Gene expression in gonadal fat pad

mRNA expression in gonadal fat tissue from mice fed a cocoa butter (CB) diet, or a CB diet supplemented with BAM15 (BAM15) was determined by qRT-PCR relative to the expression of 18S rRNA. N = 6 per group. ANOVA of \(\Delta C_{\text{t}}\) values was performed. There were no significant effects of the BAM15 exposure\(^1\).

Hepatic steatosis

Steatosis scores of H&E-stained liver sections from mice fed a cocoa butter (CB) diet, or a CB diet supplemented with BAM15 (BAM15) were recorded\(^1\).

Visible tumors

Visible liver tumors and nodules were counted at sacrifice for mice fed CB diet, or a CB diet supplemented with BAM15 (BAM15)\(^2\).

Summary

- BAM15 led to significantly (\(P<0.05\)) lower body weight and weight of gonadal fat pads.
- Weight loss of gonadal fat pads were not explained by changes in gene expression of Fabp4, Pppla2, Lipe, Pparg, or Srebf1.
- In males, BAM15 significantly decreased liver weight and hepatic steatosis.
- The number of tumors per mouse was significantly higher in male compared to female mice fed the CB diet.
- In male mice, BAM15 led to significantly fewer tumors and significant decreases in serum AFP and serum ALT activity.
- Knockout of PPARα did not stimulate hepatic steatosis, but led to higher ALT levels and significantly lower AFP levels in males fed the CB diet.
- In wt mice, the BAM diet had no effect on Procollagen 1A1 abundance but caused a significant decrease in serum CTX-1 content in both sexes.
- Expression of two adipocyte marker genes (Fabp4 and Pparg) in femoral bone marrow was unaffected by BAM15.

Conclusion

- In addition to protection from obesity, BAM15 inhibits liver tumor promotion caused by a high-saturated fat diet, particularly in males.
- PPARα has a dual effect, with knockout of the gene promoting liver injury, but reducing the tumor severity.
- BAM15 may inhibit bone resorption without a decrease in bone marrow adiposity.

\(^1\) Data were analyzed by ANOVA followed by comparisons with Tukey’s adjustment. \(^2\) Data were analyzed by Kruskal-Wallis test and Dunn’s multiple comparisons test. \(\Delta C_{\text{t}}\), \(P<0.05\), 0.01, 0.001, 0.0001.