

Activation of CRF- and CRFR1-expressing Neurons in the Central Nucleus of the Amygdala Following Stress in Adult Mice with Adolescent Alcohol History

A.K. Williams, O.R. Brunke, L. Albrechet-Souza, PhD., T.A. Wills, PhD. Louisiana State University Health Science Center, Department of Cell Biology and Anatomy, New Orleans, LA

Introduction	C-Fos, CRF and CRFR1 mRNA expression in the CeA
 Adolescent alcohol exposure is a strong predictor for the onset of mental health issues and alcohol use disorder during adulthood. 	
• Women are more likely to drink to alleviate	

anxiety or other psychological distress.

 The central nucleus of the amygdala (CeA) is a key modulator of anxiety in response to drug-related stimuli.

- Corticotropin-releasing factor (CRF) is the primary pro-stress modulator in the CeA.
- Our goal is to test the hypothesis that female mice with AIE history will have higher activity of CRF- and CRFR1-expressing neurons in the CeA than male mice.

Methods

Adolescent Intermittent Ethanol (AIE) Vapor Exposure

 Adolescent (PND30–41) C57Bl/6J mice were used and given a daily injection of either pyrazole (air group) or pyrazole + ethanol (ethanol group)

- Thirty minutes after the injection, mice were placed into volatilized ethanol (20.3 \pm 0.2 mg/L) or volatilized water (air group) chambers.
- This protocol was run for two, four-day cycles of 16 hours in the ethanol chambers and 8 hours out of the chambers.
- Mice were left undisturbed until adulthood (PND70+) and then exposed to 1 hour of restraint stress and brains were collected 1 hour post-stress.

RNA In Situ Hybridization (RNAscope)

- Brains were collected, flash frozen in isopentane, and stored at -80°C until slicing.
- Brains were sliced on a cryostat at 10 µm. Tissues were fixed using 4% paraformaldehyde. RNAscope was performed on slides containing the CeA following the steps of the ACD Fluorescent Multiplex Kit.
- The following three probes were used for RNAscope: C1: c-Fos mRNA, C2: CRF mRNA and C3: CRFR1 mRNA. Nuclei were stained using DAPI.
- Images were captured using the ZEISS AxioScan.Z1 slide scanner.

Conclusions & Future Directions

- AIE history did not produce significant sex differences in CRF or CRFR1 mRNA expression in the CeA. AIE history also did not produce significant differences in the activation of CRF- and CRFR1- positive neurons.
- Overall, c-Fos expression was expected to be higher. This is likely because slides were imaged approximately one year after the brain slicing. In the future, tissues should be imaged within 6 months of brain collection.
- Peak expression of c-Fos mRNA is approximately 30 min following the beginning of stress. In future

This research project was supported through the LSU Health Sciences Center, School of Medicine and National Institute of Health Grant R01 AA028011.