

Peritoneal Fluid Cytokine Levels in Patients Undergoing Damage Control Laparotomy Differ by Race

Patrick H Lyell BS¹, Jenna Dennis BS², Sophia Trinh MD², Cara Ramos BS¹, Jared Robinson BS¹, Jacob Stover MD², Juan Duchesne MD^{2,3,4}, John P. Hunt MD MPH^{2,3}, Patrick Greiffenstein MD^{2,3}, Alan Marr MD^{2,3}, Lance Stuke MD MPH^{2,3}, Alison A. Smith MD, PhD^{2,3}

1 Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA 2 Louisiana State University Health Sciences Center, Department of Surgery, New Orleans, LA 3 University Medical Center, New Orleans, LA 4 Tulane University, Department of Surgery, New Orleans, LA

Introduction

- The peritoneum plays a key role in the inflammatory response to abdominal injury.
- Cytokines are signaling proteins that help mediate inflammation, repair, and immune responses to injury.
- For trauma patients in extremis, the role of the peritoneum remains poorly studied. Outcomes for high-risk populations and the corresponding peritoneal environment are not well-studied.
- The objective of this study was to investigate the differences in peritoneal cytokine profiles between African American and white trauma patients undergoing damage control laparotomy.

Methods

- Peritoneal fluid samples were collected from adult trauma patients undergoing damage control laparotomy over a one-year period at a Level 1 trauma center.
- Samples were collected at the initial surgery and at take backs.
- Baseline demographic data was collected.
- Cytokine concentrations were measured using a 10-analyte multiplex assay. The cytokines were run in triplicates.
- Data was analyzed using the Mann-Whitney U test and Fischer's exact test.
- P-value < 0.05 was deemed significant.

Acknowledgements:

Clinical data for research was obtained from the Trauma Registry of University Medical Center New Orleans, Spirit of Charity Trauma Center.

Data & Results

Table 1: Summary of Demographic Data

	White <i>n</i> = 5	African American $n = 15$	P-value	
Male (<i>n</i> , %)	4, 80.0%	13, 86.7%	1	
Age (x̄, s)	47.0, 9.0	31.3, 10.2	0.006*	
BMI (x̄, s)	30.1, 2.5	28.4, 6.2	0.55	
EtOH Level (mg/dL) (x̄, s)	62.4, 87.9	65.2, 95.9	0.95	
Penetrating Trauma (n, %)	1, 20.0%	12, 80.0%	0.03*	
Injury Severity Score (ISS) (x̄, s)	27.0, 6.1	25.0, 15.0	0.66	

Table 2: Summary of Cytokine Data

Cytokines (pg/mL) (x̄, s)	White <i>n</i> = 5	African American $n = 15$	P-value	
IFN-γ	1.3, 0.9	3.7, 4.7	0.98	
IL-6	5651.1, 4703.9	8840.6, 4875.6	0.23	
IL-1-β	13.2, 19.2	1078.9, 2026.2	0.01*	
IL-8	3045.2, 3243.5	7722.9, 3868.3	0.07	
IL-4	212.7, 464.4	99.9, 251.4	n/a	
IL-17A	2.0, 1.7	17.2, 54.6	0.13	
IL-10	383.5, 465.8	552.9, 615.0	0.31	
FGF-2	723.5, 643.7	2026.2, 2093.4	0.23	
MCP-1	4702.2, 3170.6	6453.6, 2991.3	0.35	
VEGF	104.8, 81.0	552.7, 698.1	0.03*	

^{*} Denotes significant p-value < 0.05

Figure 1: Mean and 95% CI of IL-1-β and VEGF between white and African American (AA) trauma patients.

Table 3: Summary of Clinical Outcomes

	White <i>n</i> = 5	African American $n = 15$
Survived (n, %)	4, 80.0%	14, 93.3%
Days in Hospital (x̄, s)	27.2, 17.6	27.7, 19.2
Complications (n, %)	2, 40.0%	5, 33.3%

- African American patients were significantly younger than white patients (p = 0.006, Table 1).
- African American patients suffered from penetrating trauma significantly more than blunt trauma compared to white patients (p = 0.03, Table 1).
- Significant differences in the concentrations of IL-1-β (p = 0.01) and VEGF (p = 0.03) were found (Table 2, Figure 1)...
- A p-value was not calculated for IL-4 due to undetectable results in more than ½ of the white trauma patient samples.

Conclusions

- African American trauma patients had significantly higher concentrations of IL-1-β and VEGF compared to white patients.
- This may suggest differences in inflammatory and repair responses, though the implications on clinical outcomes are still unclear.
- Further research should investigate the effect of age or trauma type on peritoneal cytokine variation.
- Future research efforts should also increase sample size and evaluate different populations.

References:

- 1. Holmdahl L, Ivarsson M. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. European Journal of Surgery. 1999;165:1012–1019. doi: 10.1080/110241599750007810.
- 2. Serfin J, Dai C, Harris JR, Smith N. Damage control laparotomy and management of the open abdomen. Surgical Clinics of North America. 2024;104(2):355. doi: 10.1016/j.suc.2023.09.008. 3. Micha A, Psarras K, Ouroumidis O, et al. A time course of bevacizumab (anti-VEGF) effect on rat peritoneum: Relations between antiadhesive action and fibrin regulation enzymes. Surg Innov. 2017;24(6):543. doi: 10.1177/1553350617729510.
- 4. Zhao J, Zhang T, Deng Z, Han X, Ma T, Xie K. Evaluation of biomarkers from peritoneal fluid as predictors of severity for abdominal sepsis patients following emergency laparotomy. JIR.
- 2023; Volume 16: 809. doi: 10.2147/jir.s 401428. 5. De Lima CA, Silva Rodrigues IS, Martins-Filho A, et al. Cytokines in peritoneal fluid of ovarian
- neoplasms. Journal of Obstetrics and Gynaecology. 2019;40(3):401. doi: 10.1080/01443615.2019.1633516.
- 6. Brokelman WJA, Lensvelt M, Rinkes IHMB, Klinkenbijl JHG, Reijnen MMPJ. Peritoneal changes due to laparoscopic surgery. Surg Endosc. 2010;25(1):1. doi: 10.1007/s00464-010-1139-2.