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Usher syndrome (Usher) is a rare autosomal recessive disorder characterized by the 

loss of hearing, vestibular, and visual function. Usher patients exhibit varying 

degrees of impairment and the 3 main clinical types (Usher 1, 2, 3) are classified by 

severity and onset of hearing and vision loss. Usher type 1 is the most severe with 

profound congenital sensorineural hearing loss and vestibular dysfunction, and 

progressive vision loss due to retinitis pigmentosa beginning in early childhood. 

USH1C is the most common Usher 1 subtype in the Acadian populations of 

Louisiana and Canada due to a founder mutation in the USH1C gene (c.216G>A

(216A)). The 216A mutation creates a cryptic 5’ splice site in exon 3 of the USH1C

gene that is favored over the authentic splice site. Aberrant splicing results in a 35 

base pair deletion and frameshift that results in truncated harmonin proteins.

Harmonin is a scaffolding protein crucial to the function of stereocilia bundles in 

cochlear and vestibular hair cells and maintenance of photoreceptor cells. Our long-

term goals are to restore a functional, full length harmonin protein at an early 

disease stage to minimize disease morbidity and prevent or delay progression.  

Antisense oligonucleotides (ASOs) bind to complementary base pairs on pre-mRNA

and can be utilized to correct splicing, restoring normal protein expression and 

function. We have previously shown that a novel antisense oligonucleotide (ASO-

29) therapy targeting the 216A mutation in the USH1C gene has high therapeutic 

efficacy in transiently restoring hearing, balance, and vision when administered 

early in the critical developmental period in a murine model of USH1C. To further 

develop this drug, various ASO chemistries targeting the 216A mutation were tested 

for efficacy in improving hearing and balance in USH1C mice.

• Systemic treatment with AS0-29, MO-29, or COMBO therapy 

significantly improved hearing thresholds to low, mid, and 

high frequency stimulation in USH1C mice when delivered 

early in the neonatal critical period.

• Systemic treatment with a 2'MOE ASO (ASO-29) showed a 

10-15 dB SPL increase in threshold shift compared with a 

morpholino (MO-29) or the COMBO therapy, suggesting 

better hearing rescue in USH1C mice.

• Systemic treatment of USH1C mice with a 2'MOE ASO 

(ASO-29) significantly improved hearing thresholds to low, 

mid, and high frequency stimulation that was stable for at 

least 3 months-post treatment, whereas treatment with a 

morpholino (MO-29) or the COMBO therapy showed a loss in 

sensitivity (10-15 dB SPL) between 1-3 months post-

treatment, suggesting ASO chemistry may affect the duration 

of hearing rescue.

• Systemic treatment with ASO-29, MO-29, or the COMBO 

therapy significantly improved balance behavior in USH1C 

mice, suggesting that 2'MOE or MO ASOs can improve fine-

and gross-motor coordination and balance.
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Mice: USH1C c.216G>A knock in mice and wildtype littermate controls were bred 

at LSUHSC. 

Antisense oligonucleotides: 2’-O-methoxyethyl-modified (2'MOE)  targeting the 

Ush1c c.216G>A mutation (ASO-29, 5’-AGCTGATCATATTCTACC-3’) were 

generated as previously described by Lentz et al. (2013). Morpholino ASOs (MO-

29) were also designed to target the human USH1C c.216G>A mutation and 

synthesized and purified by Gene Tools, LLC.

Intraperitoneal Injection: USH1C mice were treated systemically via 

intraperitoneal injection at postnatal day 2 with 300 μg of ASO-29, MO-29, or a

combination of the two chemistries (COMBO) each at 150 μg.

ABR: Mice were anesthetized with ketamine/xylazine and normasol, placed on a 

heating pad to maintain core temperature, and put into a sound attenuating chamber. 

Thresholds were detected visually by the lowest sound pressure level (SPL) in 

which a recognizable and reproducible waveform was present. Responses were 

recorded at ascending frequencies (5.6, 8, 11.3, 16, 22.6, 32 kHz) and descending 

intensities in 6 dB increments (90-18 dB SPL). 

Rotarod: Mice were acclimated to the Rotarod with a short training session 2-3 

days prior to experimental trials. Mice were placed in physically separated 

individual lanes at a baseline rotation of 4 RPM, accelerating to a maximum of 40 

RPMs over 240 seconds. Time stopped when a mouse fell, spun continuously in 

quick succession, or reached 300 seconds. Five trials separated by 10-minute rest 

periods were conducted, and the highest 3 times were averaged.

Balance Beam:  Mice were acclimated to the Balance Beam with a short training 

session 2-3 days prior to experimental trials. Mice were tracked across a two-

dimensional digital active zone created with Any-maze software. They traversed 60 

cm across a 16 mm wide elevated beam to enter a 3D-printed housing structure. 5 

trials were sequentially conducted, and the fastest 3 times were averaged.

Statistical Analyses: All data are shown as mean ± SEM. Univariate analysis of 

variance (ANOVA) was used to determine intergroup differences.

Figure 1. Average ABR Threshold (dB SPL) to pure tones ranging in frequency 

from 5.6 to 32 kHz in 1- and 3- month mice. In  USH Control mice, thresholds 

were elevated or undetectable for all frequencies at both time points. WT mice had 

very low thresholds, especially in the middle frequencies, and were often able to 

hear the lowest intensities played. USH1C mice treated systemically with ASO-

29, MO-29, or COMBO therapy showed moderate rescue of ABR thresholds 

compared to untreated USH1C mice (p<0.05). WT mice were statistically 

different from all other groups (p<0.05). ASO-29 mice were statistically different 

from MO-29 and COMBO mice. (p<0.05). Error bars indicate SEM.

Figure 2. Rotarod latency to fall (s) in 1- and 3- month mice. USH1C mice 

treated with ASO-29, MO-29, or COMBO therapy had longer latency to fall 

compared to untreated USH Control mice (p<0.05).  Latency to fall was not 

statistically different from WT mice at either time point following treatment with 

ASO-29 or MO-29, whereas mice treated with  COMBO were statistically 

different from WT mice (p<0.05). Error bars indicate SEM.

Figure 3. Balance beam time to traverse active zone (s) in 1- and 3- month mice.. 

USH1C mice treated with ASO-29, MO-29, or COMBO therapy crossed the 

active zone faster than untreated USH Control mice (p<0.05) and were not 

statistically different from WT mice at both time points (p<0.05). At 3 months, 

USH Control mice were only able to cross in 3/95 total trials (3.16%), while 

100% of WT, ASO-29, MO-29, and COMBO crossed successfully.  Error bars 

indicate SEM.
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