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Introduction

Background
* Foundation models
» Large neural networks pre-trained on broad datasets
to learn task-agnostic representations
» Transformative in natural language processing &
vision; large potential in microbiome science
* Vaginal microbiome importance
» Regulates mucosal immunity, reproductive health, STI
susceptibility
* Five canonical community-state types (CST I-V);
CST IV linked to dysbiosis
* Finer 13 subCSTs capture strain-level and co-
dominant anaerobe differences
* Clinical problem
» Bacterial vaginosis (BV) leads to increased risk of
preterm birth, HIV, recurrent infections
* Need for early, non-invasive prediction tools

Methods
* Datasets
« VALENCIA reference: 13,231 16S profiles, 199 taxa,
1,975 women, subCST labels
* Longitudinal cohort: 859 serial samples from
healthy controls and initially BV-negative women
* Preprocessing: Centered Log-Ratio Transform, then
standardized
* Model architecture — FT-Transformer
* Treats each taxon abundance as a learnable token
» Multi-head self-attention captures high-order taxon
iInteractions with positional dropout
* 64-d embedding
* Multi-task pre-training
» Supervised contrastive loss — cluster same-subCST
samples, separate different subCSTs
» Cross-entropy head — explicit subCST classification
* Fine-tuning for BV prediction
» Classify Healthy vs pre-incident BV (pre-iBV)
* Train classification head for 550 epochs; unfreeze last
two encoder layers for final 100 epochs
* Metrics: accuracy, ROC-AUC
* Interpretability
* CLS-token attention — feature importance
* Query-key attention heat-map — taxon-taxon
interactions
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Figure 1. FT-Transformer Architecture

Multi-Task Pre-training

Supervised Contrastive Pretraining

_ Figure 2. Supervised
— Train .
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training loss curves
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Training and validation
supervised contrastive
loss plus cross-entropy
loss over 69 epochs.

l\ Best validation loss was
at epoch 34.
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Spread of embeddings after pre-training
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Fine-tuning for pre-iBV prediction
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Figure 5. Confusion Matrices for pre-iBV prediction

Normalized confusion matrix shows label-wise classification on training (left)
and validation (right)

Pre-iIBV Attention Analysis
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Figure 6. Attention-based feature importance during pre-iBV prediction

Top 10 taxa ranked by average CLS-token attention weight. Gardnerella vaginalis
receives the highest weight, followed by Lactobacillus taxa
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Conclusion

« Strong representation learning
 UMAP projections show tight subCST clusters which
demonstrate ecologically significant embeddings
* Biological plausibility
* Feature importance highlights Gardnerella, Atopobium, Lactob
-acillus taxa
* Generalization
* Validation confusion matrix mirrors training which shows that
fine-tuning was robust to unseen samples
* Implications
* Foundation model approach enables all-purpose fine-tuning
for various vaginal health endpoints
* Novelty
* The first foundation model for human vaginal microbiome
 Learns transferable, ecologically aware embeddings that
» Achieve 95% / 0.99 ROC-AUC in predicting BV before its
diagnosis
* Provide interpretable taxon-level and interaction-level
insights
* Potential to aid in disease prediction, phenotype
classification, and biomarker discovery in women's health
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