Brionna J.T. King

Fourth-Year Medical Student Louisiana State University Health Sciences Center New Orleans School of Medicine

Mentor's Name:
Giulia Monticone, PhD
Department of Genetics, School of Medicine, Louisiana State University Health Sciences
Center, New Orleans, USA

"Forodesine has anticancer immunomodulatory properties through the adenosine pathway"

Adenosine is an immunosuppressive metabolite that is overproduced in the tumor microenvironment and a major player in tumor-induced immunosuppression. Work from our group has contributed to show that adenosine binding to the Adenosine A2A Receptor (A2AR) suppresses CD8 T cell function and activation in the tumor microenvironment, whereas blocking A2AR restimulates anticancer CD8 T cell responses. In this study, I aimed to identify novel therapeutics that can block A2AR signaling, thus restoring CD8 T cell anticancer function. Using molecular docking modeling, I have found that the nucleoside analog forodesine binds to A2AR with a similar ΔG and similar binding residues as adenosine. I tested forodesine in primary CD8 T-cells against an adenosine agonist and measured functional markers associated with T-cell activation and A2AR signaling. I found that forodesine rescues CD8 T-cell activation by binding to A2AR and counteracting adenosine-mediated immunosuppression. I also tested forodesine in highly immunosuppressive Triple-Negative Breast Cancer (TNBC) mouse models and found that forodesine reduces tumor growth via stimulation of CD8 T-cell responses. Based on our findings, nucleoside analogs, like forodesine, could be investigated as novel Immunotherapeutics to successfully stimulate T-cell responses against cancer.