

Transient Somatosensory Evoked Potential Attenuation as a Warning Sign of Delayed Vertebrobasilar Infarction After Anterior Cervical

Discectomy and Fusion

School of Medicine

Jacob Chaisson, BS¹; Jack Leoni, BS¹; Ellery Hayden, MD²; Gabriel Tender, MD²; Amit Bhandutia, MD³ ¹School of Medicine, LSUHSC, New Orleans, LA

²Department of Neurosurgery, LSUHSC, New Orleans, LA ³Department of Orthopaedic Surgery, LSUHSC, New Orleans, LA

Introduction

- Anterior cervical discectomy and fusion (ACDF) is widely performed for cervical decompression and stabilization, with perioperative neurologic complications in only ~0.4 % [1].
- Vertebral artery injury (VAI) is rare (~0.07 %) [2], and perioperative ischemic stroke occurs in ~0.15 % of cases [3]—vertebrobasilar events being the least common.
- Unrecognized vascular vulnerability (atherosclerosis, tortuosity, intimal disease) may predispose patients to ischemia during multilevel ACDF but is often missed without CTA-based risk assessment [4-7].
- Intraoperative neuromonitoring (IONM) with SSEP/MEP can detect evolving neurologic injury [8].
- Case objective: Report a rare delayed vertebrobasilar infarction following multilevel ACDF with transient unilateral SSEP attenuation, emphasizing vascular risk stratification and postoperative vigilance [9-11].

Case

- Patient: 61-year-old man with hypertension and poorly controlled hyperlipidemia, presenting with 2-month history of progressive cervical myelopathy (bilateral paresthesia, impaired fine motor control, frequent object dropping).
- Preoperative MRI: Multilevel degenerative spondylosis (C4–C7) with severe canal stenosis and T2 cord signal consistent with myelomalacia (Figure 1).
- No preoperative vascular imaging (CTA/MRA) was obtained, as standard ACDF protocols focus on spinal rather than vertebral artery anatomy.
- Procedure: Standard three-level ACDF (C4-5, C5-6, C6-7) via anterior approach.
- Intraoperative neuromonitoring (IONM):
- Baseline somatosensory evoked potentials (SSEPs) symmetric and stable.
- After first cage placement (C4–5) → transient unilateral attenuation of right upper and lower extremity (RUE/RLE) SSEPs.
- Mean arterial pressure (MAP) maintained >85 mmHg; anesthetic depth (MAC) temporarily reduced (1.3 \rightarrow 0.5).
- SSEPs recovered fully within ~20 min and remained stable for the remainder of surgery (Figure 2).

References

[1] Kashkoush A, Mehta A, Agarwal N, et al. World Neurosurg. 2019;128:e107–e115. [2] Ball JR, Shelby T, Mertz K, et al. World Neurosurg. 2024;181:e841–e847. [3] Ishak B, Abdul-Jabbar A, Singla A, et al. Spine (Phila Pa 1976). 2020;45(2):109–115. [4] Sano A, Hirano T, Watanabe K, et al. Spine (Phila Pa *1976).* 2013;38(15):E960–E967. **[5]** Okano I, Salzmann SN, Winter F, et al. *J Neurosurg Spine.* 2021;36(2):261–268. **[6]** Caplan LR. Curr Treat Options Cardiovasc Med. 2003;5(3):251–256. **[7]** Brott TG, Halperin JL, Abbara S, et al. *J Am Coll Cardiol.* 2011;57(8):1002–1044. **[8]** Buhl LK, Bastos AB, Pollard RJ, et al. *J Intensive Care Med.* 2021;36(11):1237–1249. **[9]** Reddy RP, Chang R, Rosario BP, et al. Spine J. 2021;21(4):555–570. [10] Epstein NE, Danto J, Nardi D. Spine (Phila Pa 1976). 1993;18(6):737–747. **[11]** Phillips JL, Chalouhi N, Jabbour P, et al. *Neurosurgery.* 2014;75(5):560–567. [12] Kamel I, Zhao H, Koch SA, et al. *Anesth Analg.* 2016;122(5):1423–1433. [13] Sloan TB. *J Clin* Neurophysiol. 1998;15(3):217–226. [14] Anastasian ZH, Ramnath B, Komotar RJ, et al. Anesth Analg. 2009;109(3):817–821. **[15]** Noël P, Desmedt JE. *Brain.* 1975;98(1):113–128. **[16]** Guan Q, Chen L, Long Y, Xiang Z. World Neurosurg. 2017;106:715–722. [17] Cagnie B, Barbaix E, Vinck E, et al. Surg Radiol Anat. 2006;28(2):129–134. [18] Dickerman RD, Zigler JE. Spine (Phila Pa 1976). 2005;30(21):E658– E661. **[19]** Ishii D, Ishibashi K, Takeda K, et al. *Front Hum Neurosci.* 2021;15:761186. **[20]** Sameshima T, Morita A, Yamaoka Y, Ichikawa Y. *J Stroke Cerebrovasc Dis.* 2014;23(1):191–193. **[21]** Tran CT, Khoo LT, Martin NA, et al. *J Clin Neurophysiol*. 2012;29(1):17–22.

Postoperative Course

- Immediate postop: Uneventful; neurologically intact and extubated without issue.
- POD 1 (7 AM): Developed right facial droop, dysarthria, hemiparesis, and tongue deviation (NIHSS 7).
- · Imaging:
 - CT head: Right cerebellar hypodensity with mild 4th-ventricle compression.
 - CTA: Right vertebral artery thrombus (V2 segment, C2–C6) (Figure 3).
 - MRI brain: Acute right cerebellar and left pontine infarcts, consistent with embolic vertebrobasilar stroke (Figure 4).
- Management: Neuro-ICU admission; 3 % hypertonic saline, dual antiplatelet therapy (aspirin + clopidogrel); no thrombolytics or decompression. Required intubation and tracheostomy for airway protection.
- Outcome: Discharged to rehab on POD 14; at 1-year, full functional recovery with 5/5 strength and resolution of dysarthria. Follow-up radiographs confirmed solid C4-C7 fusion with intact hardware.



Figure 1. Preoperative MRI of the cervical spine demonstrating multilevel degenerative pathology. Sagittal T2-weighted imaging (A) shows severe canal stenosis from C4 to C7 with associated cord signal change. Axial images (B–D) show compressive pathology at the C4-5, C5-6, and C6-7 levels.

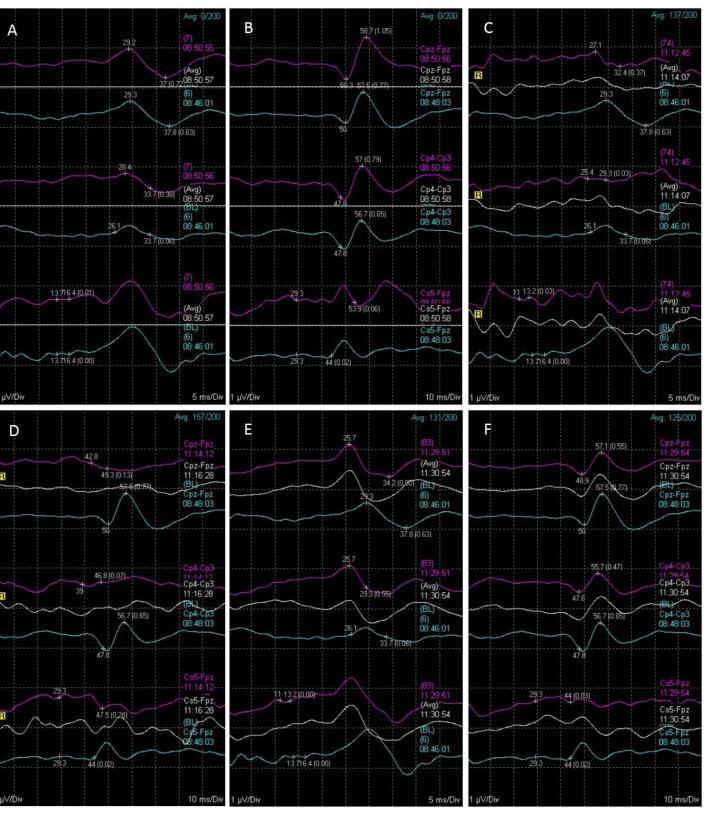
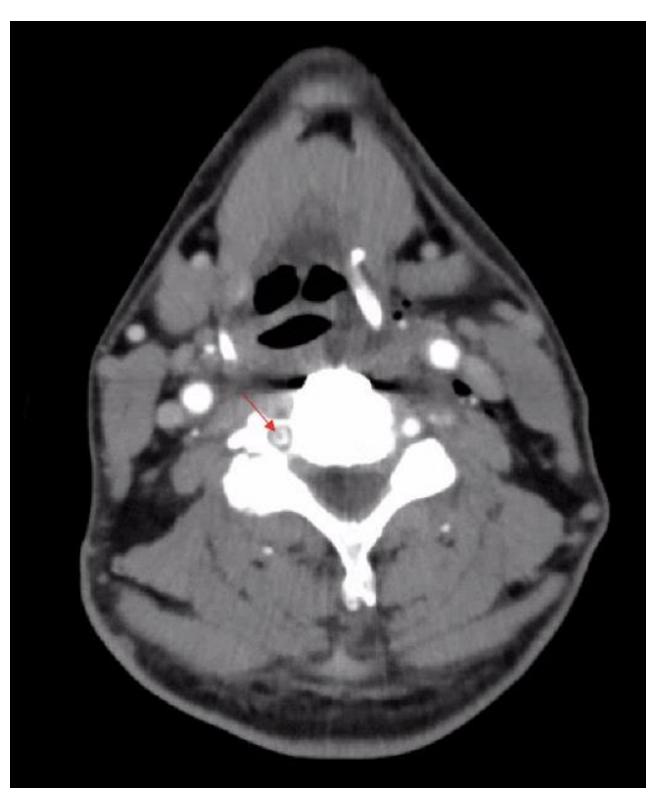



Figure 2. Intraoperative SSEPs during ACDF. Panels A-B: Baseline right upper (A) and lower extremity (B) SSEPs with symmetric waveforms and stable amplitudes across subcortical (Cs5–Fpz) and cortical (Cpz–Fpz, Cp4–Cp3) channels. Panels C–D: Attenuation of right-sided SSEPs after graft placement at C4-5 (C: RUE; D: RLE), most pronounced cortically. Panels E-F: Recovery of amplitudes following anesthetic reduction and positional adjustment. Blue = baseline; white = cumulative average; magenta = most recent trace.

Figure 3. Axial CTA of the neck showing a focal thrombus in the right vertebral artery (V2 segment, red arrow). This finding correlates with the patient's delayed posterior circulation infarcts, supporting a vertebrobasilar embolic mechanism following ACDF.

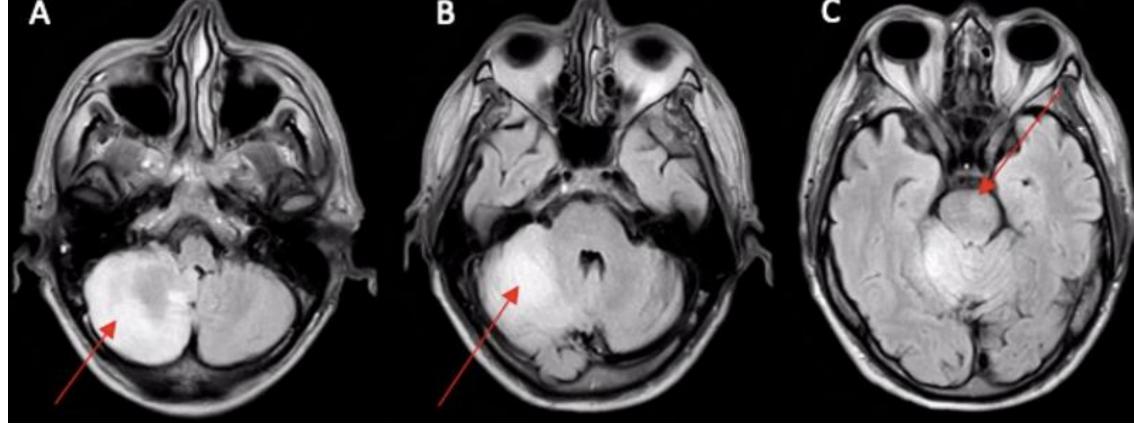


Figure 4. Axial T2-weighted MRI demonstrating multifocal posterior circulation infarcts. (A) Right cerebellar hyperintensity at the level of the inferior cerebellar peduncles; (B) right cerebellar hyperintensity at the middle cerebellar peduncle; (C) left paramedian pontine hyperintensity at the rostral pons. Red arrows indicate areas of abnormal T2 signal consistent with embolic vertebrobasilar ischemia.

Discussion & Conclusion

- Transient unilateral SSEP changes, especially involving both upper and lower extremities, may reflect vertebrobasilar hypoperfusion rather than anesthetic or positional artifact [12–15].
- Proposed mechanism: Multilevel exposure, retraction, or cage insertion may cause intimal stress or kinking of a diseased vertebral artery, leading to delayed thromboembolism [6,7,16–18].
- Pattern interpretation: Simultaneous RUE/RLE attenuation indicates disruption of brainstem or subcortical sensory pathways supplied by the vertebrobasilar system [19–21].
- This appears to be the first reported case of delayed vertebrobasilar infarction following ACDF associated with transient lateralized SSEP changes.
- Preventive measures: Maintain MAP >85 mmHg, minimize retraction, and perform structured postoperative **neuro checks** to detect evolving vascular injury early.
- **Limitations:** Single-case design; larger studies needed to validate mechanisms and refine IONM response protocols.