

Per-Pitch Strength and ROM Trends in Live-Game Baseball Pitching

Landon Godso¹, Patrick Schwing¹, Luke Young¹, Kevin Giordano PhD¹, Jessica Talmage PhD² ¹LSU Health Sciences Center, New Orleans, LA ²Northern State University, Aberdeen, SD

Introduction

Throwing Stress and Injury Risk: The repetitive, high-velocity nature of pitching places significant mechanical stress on the throwing arm, leading to both acute and chronic adaptations that increase injury risk over a season.

Chronic Adaptations: Long-term throwing exposure is associated with glenohumeral internal rotation deficit (GIRD)— $a \ge 20^{\circ}$ loss of internal rotation compared to the non-throwing arm—linked to osseous adaptations like humeral retroversion and an elevated risk of shoulder injury or surgery.

Protective and Deteriorating Strength Metrics: Decreased preseason external rotation (ER) strength predicts greater injury risk, while both ER and scaption strength tend to decline during the season, emphasizing the importance of maintaining shoulder muscle balance.

Acute Neuromuscular Changes: Studies show immediate reductions in internal rotation range of motion (ROM), ER strength, and increased fatigue following pitching sessions; however, live-game variability in pitch counts necessitates further research with greater ecological validity.

Study Purpose: This retrospective study examines how pitch count acutely affects ROM, shoulder rotational strength, scaption, and chuck pinch strength in collegiate pitchers, hypothesizing a negative correlation between pitch count and all measures except ER ROM to inform injury prevention and return-to-play strategies.

Methods

Participants and Timing: The study included 3,587 pitchers aged 8–30, encompassing 28,616 total outings, providing a large dataset across youth to collegiate levels. All ROM and strength tests were conducted immediately before and after live game outings to evaluate acute changes related to pitching workload.

Instrumentation: Data on shoulder ROM and strength (ER, IR, scaption, and chuck pinch) were collected using the ArmCare handheld dynamometer and inclinometer (Activebody Inc.), capable of precise force (± 1.4 lb + 5%) and angle ($\pm 1^{\circ}$ –3%) measurements.

ROM Testing Protocol: Internal and external rotation ROM were measured in a half-kneeling position with strict control of posture and elbow alignment, using a wall or stable surface to ensure consistent 90° arm positioning and accurate angle readings.

Strength Testing Protocol: ER, IR, and scaption strength were measured with participants lying supine against a fixed 90° surface, performing two maximal isometric efforts per test with 10 second rests, using the ArmCare sensor to record force output.

Chuck Pinch Strength Protocol: Chuck pinch grip strength was assessed in a half-kneeling 90-90° arm position simulating a baseball grip.

Figure 1. ER Strength Measurement

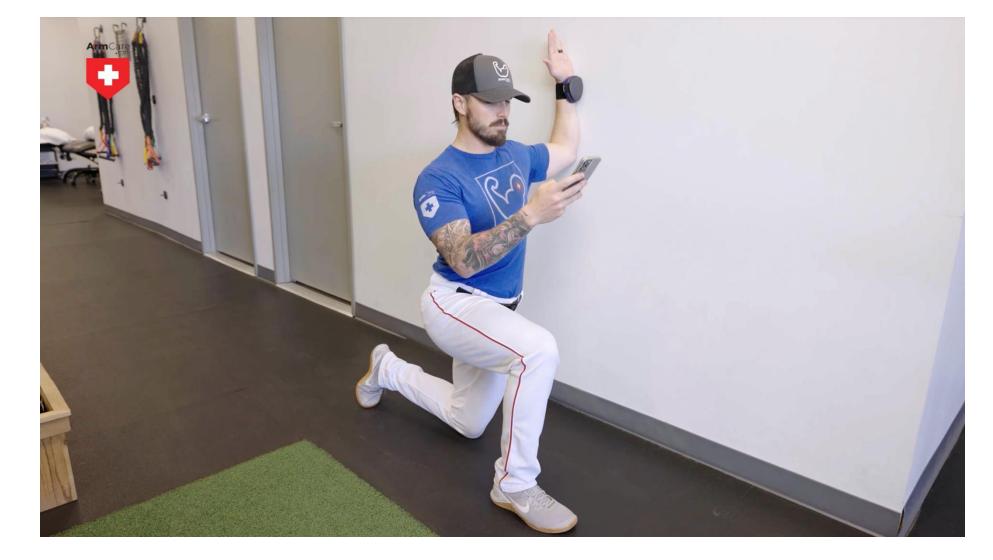


Figure 2. External ROM Measurement

Results

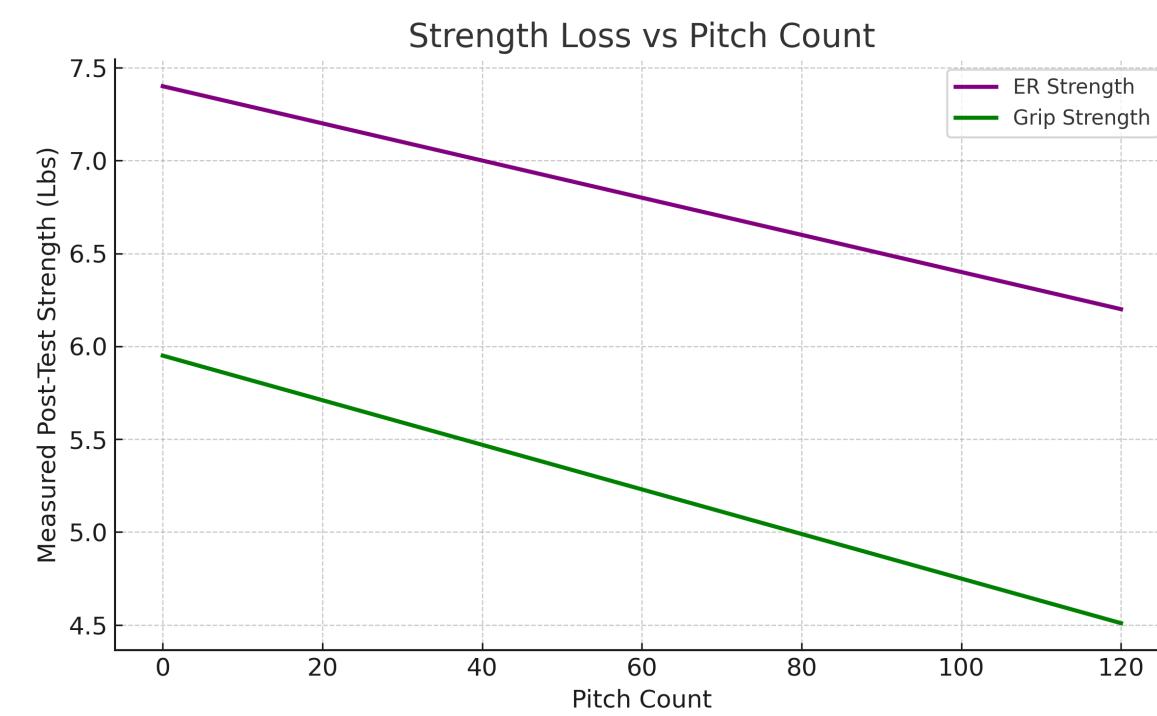
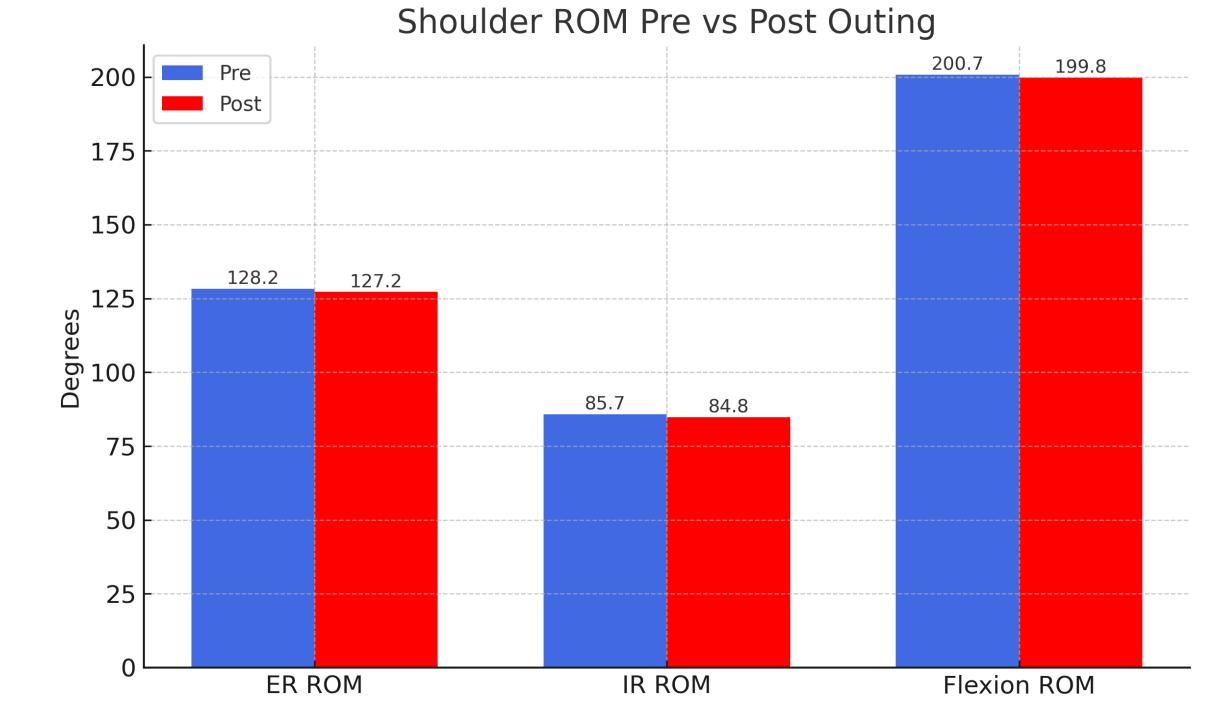



Figure 4. Shoulder ROM Pre vs Post Pitching

Strength Findings: Pitchers lost approximately 0.1 lb of ER, IR, scaption, and chuck pinch strength per every 10 pitches thrown, indicating uniform strength decline throughout the throwing arm as pitch count increased.

Range of Motion Findings: External and Internal ROM decreased slightly (-0.99° and -0.81°, respectively) and were statistically insignificant in relation to pitch count, but were significant yet minimal in relation to Pre vs Post outing.

Conclusions

The results indicate there is a generalizable rate of change of throwing arm strength that can be assessed at various times around pitching outings to predict return to baseline metrics.

The ROM findings indicate that these metrics change over the course of a season from chronic stress and not acutely.

Findings support developing a predictive algorithm that integrates strength and recovery data (including 24hour post-outing metrics) to guide personalized workload management and role assignment within pitching staffs.

References

1.Dale RB, Kovaleski JE, Ogletree T, et al. The effects of repetitive overhead throwing on shoulder rotator isokinetic work-fatigue. N Am J Sports Phys Ther 2007;2:74–80.

2.Molina SL, Bott TS, Stodden DF. Applications of the Speed-Accuracy Trade-off and Impulse-Variability Theory for Teaching Ballistic Motor Skills. J Mot Behav 2019;51:690–7. 3. Triplet JJ, Labott JR, Leland DP, et al. Factors that Increase

Elbow Stress in the Throwing Athlete: a Systematic Review of Biomechanical and Motion Analysis Studies of Baseball Pitching and Throwing. Curr Rev Musculoskelet Med 2023;16:115–22. 4.Mirabito NS, Topley M, Thomas SJ. Acute Effect of Pitching on Range of Motion, Strength, and Muscle Architecture. The American Journal of Sports Medicine. 2022;50(5):1382-1388. doi:10.1177/03635465221083325

5.Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: spectrum of pathology. Part I: pathoanatomy and biomechanics. Arthroscopy. 2003;19(4):404-420 6. Wilk KE, Macrina LC, Fleisig GS, et al. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers. The American journal of sports medicine. 2011;39(2):329-335.

7. Chou PP-H, Chou Y-L, Wang Y-S, Wang R-T, Lin H-T. Effects of glenohumeral internal rotation deficit on baseball pitching among pitchers of different ages. Journal of shoulder and elbow surgery. 2018;27(4):599-605. 8.Buffi JH, Werner K, Kepple T, Murray WM. Computing muscle, ligament, and osseous contributions to the elbow varus moment during baseball pitching. Ann Biomed Eng. 2015 Feb; 43(2): 404-15. doi: 10.1007/s10439-014-1144-z. Epub 2014 Oct 4. PMID: 25281409; *PMCID: PMC4340741.* 9.Erickson BJ, Buchheit P, Rauch J, Ciccotti MG, Paul R, Cohen SB. Change in Grip and Pinch Strength Over the Course of a Game in Professional Baseball Pitchers. Sports Health. 2024 Dec 23:19417381241305401. doi: 10.1177/19417381241305401. Epub ahead of print.

PMC11664553. 10.Hattori H, Akasaka K, Otsudo T, Sawada Y, Hall T. Changes in Medial Elbow Joint Parameters Due to Selective Contraction of the Forearm Flexor-Pronator Muscles. Healthcare (Basel). 2023 Feb 15;11(4):586. doi: 10.3390/healthcare11040586. PMID: 36833119;

11. Pabian, Patrick S., et al. "Periscapular Strength Profile Changes in Collegiate Baseball Pitchers over the Course of a Season." International Journal of Sports Physical Therapy, vol. 19, no. 2, 2024. https://doi.org/10.26603/001c.117398. 12.Fleisig GS, Andrews JR. Prevention of elbow injuries in youth baseball pitchers. Sports Health. 2012;4(5):419-424.

13. Crockett HC, Gross LB, Wilk KE, Schwartz ML, Reed J, O'Mara J, Reilly MT, Dugas JR, Meister K, Lyman S, Andrews JR. Osseous adaptation and range of motion at the glenohumeral joint in professional baseball pitchers. Am J Sports Med. 2002 Jan-Feb; 30(1):20-6. doi:10.1177/03635465020300011701. PMID: 11798991.