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Introduction

Imagine a healthcare system where intelligence is
built into every step of care. Appointments are
scheduled by Al that balances clinical urgency and
patient preference. Insurance verification happens
seamlessly. During visits, clinicians focus entirely on
patients while Al listens, documents, and creates
care plans, no typing or toggling screens. Follow-ups
are proactive, prior authorizations are pre-filled, and
guality data updates in real time.

Al is already beginning to enable this kind of care,
not by replacing clinicians but by enhancing how we
deliver and measure quality. The goal isn’t
perfection, it’s to make care more human, equitable,
and effective by rethinking how we define “quality”
itself.
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Figure 1: lllustrates how current QM processes are fragmented and manual, funneling
clinical data through disconnected systems that slow feedback and increase reporting
burden

Current Approach & Why

Changed is Needed

The Problem: Healthcare systems strive for safe, equitable,
and effective care, yet our current quality infrastructure
remains slow, fragmented, and burdensome. Clinicians
spend hours collecting and correcting data that rarely
improves patient outcomes. Reporting varies by payer,
measures lag behind practice, and meaningful insights come
too late to drive change.

Key Challenges:

* Fragmented Systems: Data trapped across EHRs, claims,
and registries prevents a full view of the patient journey.

 Administrative Burden: Manual abstraction and measure
reporting drain clinician time and morale.

* Stale Feedback: Quality metrics often reflect past
performance, not real-time care quality.

* Limited Scope: Traditional measures overlook
coordination, experience, and patient-defined outcomes.

Our Aim

To explores how artificial intelligence can help measure and

improve the quality of healthcare. We |look at how Al can make

traditional measurement faster and easier, while also enabling
entirely new ways to capture what really matters, like patient
experiences, care coordination, and outcomes that were
previously hard to measure. The goal is to show how Al can
make healthcare safer, more effective, and more patient-
centered.

Advancing Outcome Measurement with Al
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Figure 2: Outlines current measurement gaps and how Al automates and personalizes
data collection
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Figure 3: Highlights complex, team-based care activities that current metrics overlook but Al can help

capture
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Figure 4: Al strengthens quality structures by integrating
leadership, data, workforce, and team dynamics
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Figure 5: Collaborative design between clinicians, patients, and Al
systems to align technology with care needs

Call to Action/ Next Steps

Structure. Process. Outcome

The Donabedian framework evaluates healthcare quality
through Structure, Process, and Outcome. In our paper, we
show how Al can transform each element to capture what
truly matters for patients and care teams.

Structure: The foundation of care: leadership, workforce,
data systems, and team dynamics. Al strengthens these by
supporting governance, training, communication, and
reliable data infrastructure.

Process: How care is delivered: patient journeys, protocol
adherence, and follow-ups. Al can detect gaps, automate
tasks, and flag unsafe or low-value care in real time.

Outcome: The results of care: clinical, patient-reported, and
experiential outcomes. Al enables richer, real-time
measurement that reflects the quality of care from both
patient and system perspectives.
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Next Steps:

 Co-design Al tools with clinicians and patients

* Evaluate for fairness, safety, and real-world accuracy

* Establish oversight and continuous performance
monitoring

* Expand measurement to include patient stories and
lived experiences

Takeaway:

Al’'s promise in healthcare quality lies not in replacing
human judgment, but in freeing it, making measurement
faster, fairer, and more meaningful for patients and
clinicians alike.
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