

Radiofrequency Ablation of Indeterminate Thyroid Nodules: The First North American Comparative Analysis

Issa PP¹, Omar M², Issa CP¹, Buti Y², Hussein M², Aboueisha M², Abdelhady A², Shama M², Lee GS³, Toraih E², Kandil E²

Department of Surgery (1) LSUHSC SOM, New Orleans, LA, USA, (2) (1) Tulane University SOM, New Orleans, LA, USA, (3) Yale University SOM, New Haven, CT, USA

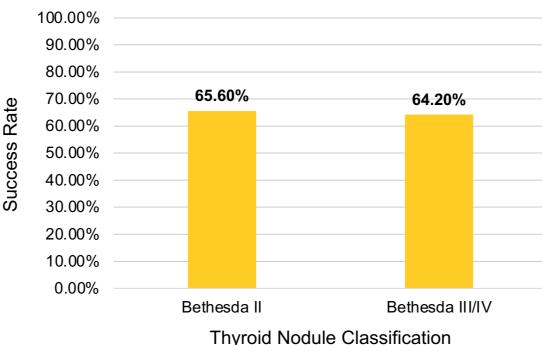
Introduction

- Thyroid nodules can be classified as benign, malignant, or indeterminate, the latter of which make up 10–30% of nodules.
- Radiofrequency ablation (RFA) has become an attractive and promising therapy for the treatment of benign thyroid nodules.
- Though an attractive treatment modality, the current ATA guidelines recommend RFA only for the management of benign thyroid nodule, necessitating surgical management for the treatment of both indeterminate nodules (10–30% of all nodules) and malignant nodules (5% of all nodules).
- International literature, however, suggests RFA to be promising beyond their typical treatment of benign nodules, including papillary thyroid carcinomas.

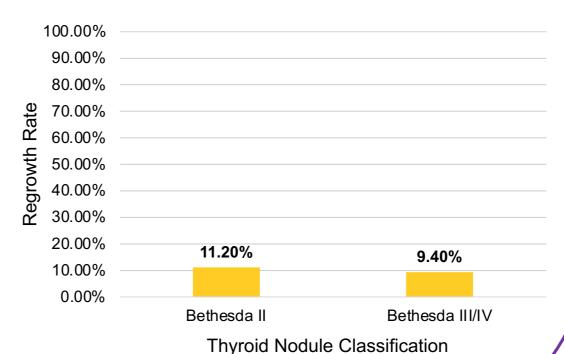
Research Question

Can RFA safely and effectively treat indeterminate thyroid nodules?

Methods


- Our protocol consisted of preoperative FNA as well as comprehensive neck ultrasounds, treatment by RFA, and subsequent follow-up appointments at the 1, 3, 6, and 12 month marks. All operations were performed by fellowship-trained endocrine surgeons.
- VRR was calculated as [(V₀-V₁)/V₀]x100, where V₀ signifies the initial nodule volume and V₁ the postablation nodule volume. VRR was utilized to determine operative success, defined as a VRR of >50% at final follow-up. Nodular regrowth was described as a nodule that was assessed by ultrasound to be of greater volume postoperatively than pre-operatively.

Results


 Table 2: Demographic characteristics of included patients

Characteristics	Levels	Total		Bethesda II	p-value
			nodules	nodules	
Number		178	53	125	
Demographic data					
Age	Median (IQR)	64 (53-69)	63 (56-68)	65 (52.5-70)	0.49
Gender	Female	128 (71.9)	30 (56.6)	98 (78.4)	0.003
	Male	50 (28.1)	23 (43.4)	27 (21.6)	
Race	African American	100 (56.2)	28 (52.8)	72 (57.6)	0.82
	White	71 (39.9)	23 (43.4)	48 (38.4)	
ВМІ	Median (IQR)	30 (26.7-34.3)	30.5 (27.5-34.5)	29.8 (26.4-34.3)	0.38
Baseline sonographic					
features					
Nodule maximum	Median (IQR)	2.4 (1.5-4)	2.5 (1.5-4.3)	2.3 (1.4-3.7)	0.47
diameter	Median (IQIV)	2.4 (1.3-4)	2.3 (1.3-4.3)	2.3 (1.4-3.7)	0.47
Baseline Volume	Median (IQR)	1.8 (1.1-2.9)	1.9 (1.1-3.2)	1.7 (1.1-2.7)	0.45
Composition	Solid	5 (2.8)	3 (5.7)	2 (1.6)	0.31
	Cystic	157 (88.2)	46 (86.8)	111 (88.8)	
	Mixed	16 (9)	4 (7.5)	12 (9.6)	
Echogenicity	Hypoechoic	33 (21.3)	11 (23.4)	22 (20.4)	0.74
	Isoechoic	121 (78.1)	36 (76.6)	85 (78.7)	
	Hyperechoic	1 (0.6)	0 (0)	1 (0.9)	
Vascularity	Grade 0	11 (7.9)	1 (2.3)	10 (10.3)	0.054
	Grade 1	46 (32.9)	11 (25.6)	35 (36.1)	
	Grade 2	53 (37.9)	23 (53.5)	30 (30.9)	
	Grade 3	30 (21.4)	8 (18.6)	22 (22.7)	
Elastography	Soft	7 (5.3)	4 (10)	3 (3.2)	0.27
	Mixed	96 (72.2)	27 (67.5)	69 (74.2)	
	Stiff	30 (22.6)	9 (22.5)	21 (22.6)	
Calcifications	No Calcifications	91 (58.7)	29 (61.7)	62 (57.4)	0.25
	Microcalcifications	51 (32.9)	12 (25.5)	39 (36.1)	
	Macrocalcifications	13 (8.4)	6 (12.8)	7 (6.5)	
Laboratory data		, , ,	,		•
Baseline TSH uIU/mL	Median (IQR)	1.3 (0.7-1.9)	1.3 (0.8-1.9)	1.3 (0.7-2)	0.67
Post procedural TSH uIU/mL	Median (IQR)	1.2 (0.7-1.8)	1.1 (0.7-1.8)	1.2 (0.8-1.8)	0.58

Success Rate by Nodule Classification

Regrowth Rate by Nodule Classification

Figure 1: Benign and indeterminate thyroid nodules treated by RFA (A) success rates and (B) regrowth rates. Success was a volume reduction rate of ≥50%. Nodular regrowth was defined as a nodule which was assessed by ultrasound to be of greater volume postoperatively than pre-operatively.

Findings

- 178 patients with thyroid nodules diagnosed as benign (Bethesda II) or indeterminate (Bethesda III/IV) by preoperative cytopathological analysis were included.
- Though patients with benign nodules tended to be female, patients were similar with respect to age, race, BMI, baseline sonographic features, and preoperative biochemical parameters.
- Patients in the benign and indeterminate cohorts had similar thyroid nodule volume reduction rates at 65.60% and 64.20%, respectively (*p*=0.68).
- The two groups had similar nodular regrowth rates, at 11.2% for benign nodules and 9.40% for indeterminate nodules (*p*=0.72).
- A total of 3 cases of transient dysphonia were reported.

Discussion

- RFA of indeterminate thyroid nodules was comparable to that of benign thyroid nodules in all parameters of interest, including volume reduction rate.
- To our best knowledge, our work is the first North American analysis comparing benign and indeterminate thyroid nodules and suggests RFA to be a promising modality for the management of indeterminate thyroid nodules.
- Future larger studies are warranted to further elucidate the difference, if any, in managing different nodule
 Bethesda classes.

References

[1] Dean, D.S.; Gharib, H. Fine-Needle Aspiration Biopsy of the Thyroid Gland. Endotext Internet 2015. [2] Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [3] Ha, S.M.; Sung, J.Y.; Baek, J.H.; Na, D.G.; Kim, J.; Yoo, H.; Lee, D.; Whan Choi, D. Radiofrequency Ablation of Small Follicular Neoplasms: Initial Clinical Outcomes. Int. J. Hyperthermia 2017, 33, 931–937.