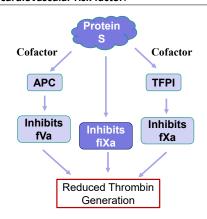


Novel Variants Related to Protein S and Folate Deficiency in a Female Patient

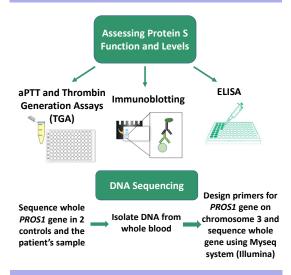


¹Louisiana State University Health Sciences Center, New Orleans, LA

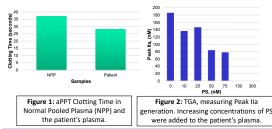
Introduction

- Protein S (PS) deficiency is a major contributor to acquired hypercoagulability.
- Acquired hypercoagulability causes myocardial infarction, stroke, and deep vein thrombosis in millions of individuals.
- Despite its importance, PS is the least understood anticoagulant.
- Folate deficiency, leading to methionine deficiency, is related to increased levels of homocysteine.
- Increased levels of homocysteine are a cardiovascular risk factor.

Aims


The aim of this study is to evaluate the genetic and proteomic data related to Protein S

Deficiency in the female patient.


Patient History

- The patient is a 46-year-old female.
- Her mother has a history of multiple miscarriages and thrombophilia.

Methods

aPTT and TGA Analysis

Immunoblotting Analysis

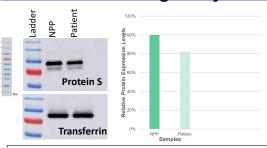


Figure 3: Immunoblot analysis of total Protein S levels in NPP and the patient's sample. Transferrin was stained for as a loading control using Sheep Anti-PS Antibody/ Anti- Sheep IgG.

ELISA Analysis

Samples	% PS
NPP	100%
Patient	57.96%

Figure 4: Amount of free Protein S in NPP and the patient's sample

DNA Sequencing Analysis

Novel Variations in	
PROS1 Gene	Effect on mRNA
c.1061+62_1061+63ins	May cause skipping of exon 10
	May create new cryptic acceptor
c.945+93del	splice site
	May produce two new cryptic
c.443-159del	acceptor splice sites
Known Variations in	
PROS1 Gene	Effect on mRNA
	3' UTR variation in patient and
rs9681204	control
rs1401681102	SNP in both patient and control
	Synonymous variation that does not
rs6123	affect protein structure
	SNP in intron related to DHFRL1-
	significant because may help explain
	the patient's folate deficiency and
<u>rs8178610</u>	anemia

Discussion

- Functional tests (aPTT and TGA) displayed decreased clotting time and increased total thrombin generation. The addition of PS lead to a decrease in Peak IIa generation, indicating the patient has reduced levels of PS. Of note, addition of 75 nM PS lead to a 41.9% decrease in Peak IIa.
- Quantitative tests (immunoblotting and ELISA) displayed decreased levels of total and free PS respectively.
- Immunoblotting revealed an 18% decrease in total PS. ELISA revealed a 42% decrease in free PS.
- DNA sequencing revealed **7 variations in the PROS1** gene.

Conclusion

Future research warrants examining the three novel variations and conducting proteomic analyses on the altered proteins in the patient.