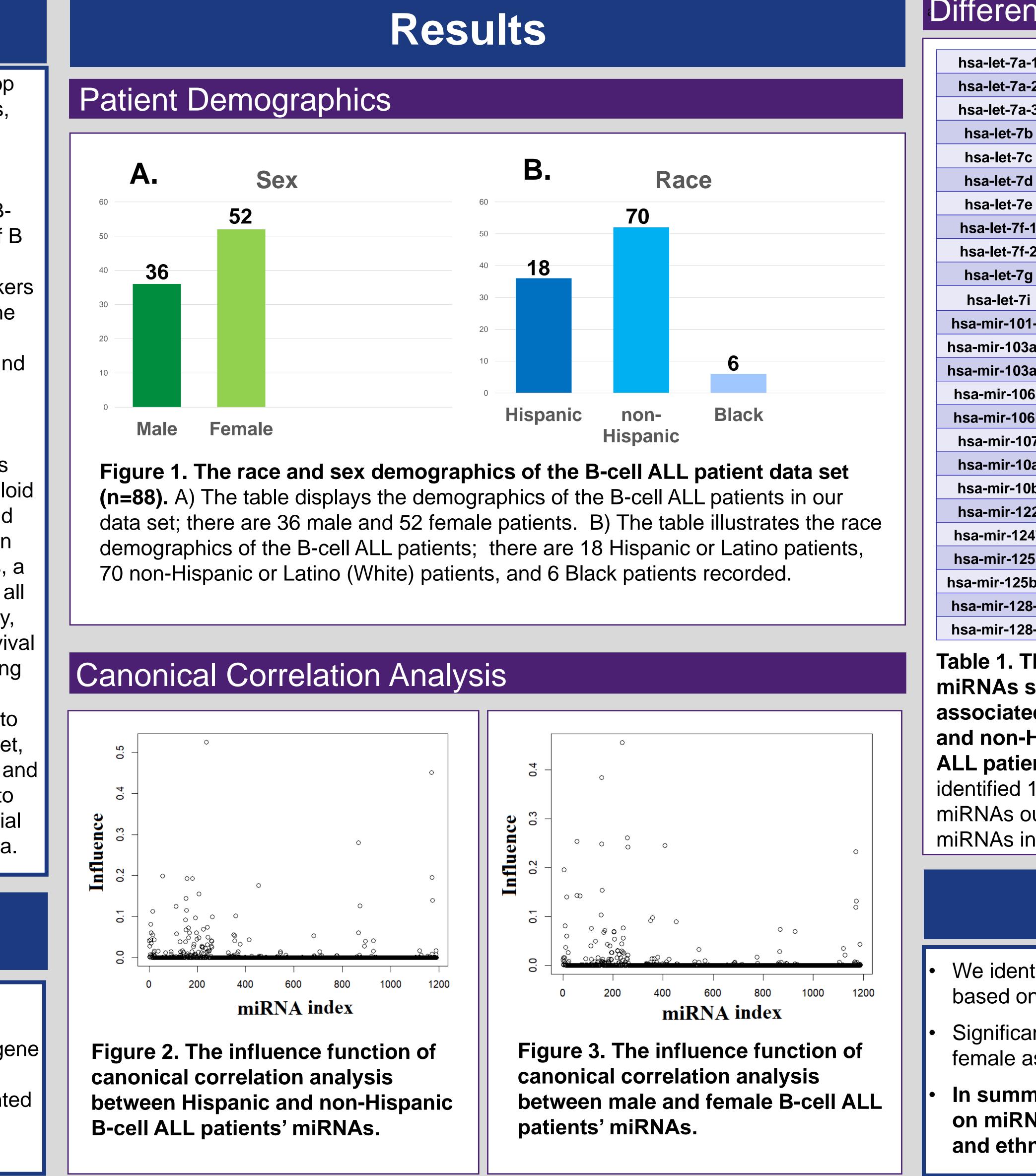
Investigating MicroRNAs as a Biomarker for Analyzing Racial and Gender Disparities in B-cell ALL Patients **NEW ORLEANS** Lynn-Chi Nguyen¹, Md Ashad Alam², Jovanny Zabaleta³, Lucio **School of Medicine** Miele⁴, and Fokhrul Hossain⁴

¹Rice University,²School of Medicine, Tulane University, ³Department of Interdisciplinary Oncology, LSU Health Sciences Center, and ⁴Department of Genetics, LSU Health Sciences Center

VATIONAL CANCER INSTITUTE


Introduction

Leukemias are hematologic malignancies. They develop due to failures in the process that creates normal leukocytes, causing an accumulation of immature, dysfunctional cells. Leukemias are the eleventh leading cause of cancer deaths globally, and there are currently 376,508 leukemia patients either living with the disease or are in remission nationally. Bcell acute lymphoblastic leukemia is caused by an excess of B lymphoblasts malignancies in the bone marrow.

Evidence reveals that miRNAs can be used as biomarkers in order to examine the early stages of leukemia and view the impact of chemotherapy on the progression of the disease. Specifically in acute myeloid leukemia, miRNA has been found to impact all parts of the progression of AML development: including a patient's survival rate, the differentiation in the progression of their disease, and cell proliferation. Gender disparities in leukemia have not yet been well-studied; males are affected more by leukemia than females. In chronic myeloid leukemia, women are typically diagnosed at a later stage and have lower platelet counts compared to men. However, when diagnosed, men are found to have higher hemoglobin levels, a larger spleen size, and abnormalities in gene expression. In all blood cancers, White patients are diagnosed more frequently, yet Black and Hispanic patients with AML have a worse survival rate. We aim to analyze miRNA expression in B-cell ALL using the publicly available data set from Tumor Cancer Genome Atlas (TCGA), a public genomic database with the intention to advance cancer research. Due to the limitation of our data set, we limit our analysis among male and female, and Hispanic and non-Hispanic patients. The result of this project will help us to determine miRNA signatures as a biomarker to examine racial and gender disparities in B-cell acute lymphoblastic leukemia.

Methods

- We downloaded the B-cell ALL patient data from publicly available TCGA dataset (https://portal.gdc.cancer.gov/). Data was then analyzed by "Multivariate analysis-based gene
- shaving," which uses the influence function of canonical correlation analysis [PMID: 31120939] and was implemented by an RKUM R-packages.

This research project was supported by the National Institutes of Health (NIH), National Cancer Institute (NCI).

Differential Expression of miRNA					
hsa-let-7a-1	hsa-mir-1287		hsa-let-7a-1	hsa-mir-140	
hsa-let-7a-2	hsa-mir-129-2		hsa-let-7a-2	hsa-mir-141	
hsa-let-7a-3	hsa-mir-1307		hsa-let-7b	hsa-mir-142	
hsa-let-7b	hsa-mir-130a		hsa-let-7c	hsa-mir-143	
hsa-let-7c	hsa-mir-130b		hsa-let-7d	hsa-mir-145	
hsa-let-7d	hsa-mir-140		hsa-let-7e	hsa-mir-146a	
hsa-let-7e	hsa-mir-142		hsa-let-7f-1	hsa-mir-148b	
hsa-let-7f-1	hsa-mir-143		hsa-let-7g	hsa-mir-150	
hsa-let-7f-2	hsa-mir-145		hsa-let-7i	hsa-mir-151a	
hsa-let-7g	hsa-mir-146a		hsa-mir-100	hsa-mir-155	
hsa-let-7i	hsa-mir-148b		hsa-mir-103a-1	hsa-mir-15b	
hsa-mir-101-1	hsa-mir-150		hsa-mir-103a-2	hsa-mir-16-1	
hsa-mir-103a-1	hsa-mir-151a		hsa-mir-106b	hsa-mir-16-2	
hsa-mir-103a-2	hsa-mir-15a		hsa-mir-10a	hsa-mir-17	
hsa-mir-106a	hsa-mir-15b		hsa-mir-10b	hsa-mir-181a-1	
hsa-mir-106b	hsa-mir-16-1		hsa-mir-1247	hsa-mir-181a-2	
hsa-mir-107	hsa-mir-16-2		hsa-mir-1248	hsa-mir-181b-1	
hsa-mir-10a	hsa-mir-17		hsa-mir-125a	hsa-mir-181b-2	
hsa-mir-10b	hsa-mir-181a-1		hsa-mir-1266	hsa-mir-181c	
hsa-mir-122	hsa-mir-181a-2		hsa-mir-128-1	hsa-mir-182	
hsa-mir-1247	hsa-mir-181b-1		hsa-mir-1306	hsa-mir-183	
hsa-mir-125a	hsa-mir-181b-2		hsa-mir-1307	hsa-mir-186	
hsa-mir-125b-2	hsa-mir-181d		hsa-mir-130a	hsa-mir-18a	
hsa-mir-128-1	hsa-mir-182		hsa-mir-130b	hsa-mir-18b	
hsa-mir-128-2	hsa-mir-183		hsa-mir-132	hsa-mir-191	
Table 1. The top 50			Table 2. The	top 50	
miRNAs significantly			miRNAs where the most		
associated with Hispanic		;	variation exi	ists between	
and non-Hispanic B-cell			male and female B-cell		
ALL patients. We			ALL patients. We found		
identified 157 significant			163 significant miRNAs		
miRNAs out of 1188			out of 1188 miRNAs in the		
miRNAs in the dataset.			dataset.		

Conclusions

- based on sex and race in B-cell ALL patients.
- and ethnicity differences.

LSUHSC • MOFFITT SPIRIT-CHD

Southeast Partnership for Improving Research & Training in Cancer Health Disparities

We identified significant differential miRNA expression

Significant miRNA interaction exists between male and female as well as Hispanic and non-Hispanic patients.

In summary, candidate B-cell ALL biomarkers based on miRNA signatures should take into account sex