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Introduction
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Despite remarkable progress in patient management, liver cancer remains the fourth leading cause
of cancer mortality worldwide [1]. Within the United States, an estimated 42,810 people were
diagnosed with liver cancer in 2019 and an estimated 30,160 died from the disease, according to the
American Cancer Society [2]. Sadly, it is one of the few types of cancer with increases in both 82.35
incidence and mortality rates of about 3% per year in the United States [2]. The prevalent liver cancer | | _
is hepatocellular carcinoma (HCC) accounting for 70%—90% ot all newly diagnosed liver cancers. Well N“
supported risk factors include hepatitis B virus/hepatitis C virus (HBV/HCV) infection, nonalcoholic 1941
steatohepatitis, alcoholism, and smoking [2]. The 5-year survival rate of HCC varies widely across
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different populations, with an average rate of less than 32% [1]. It is a highly heterogeneous disease
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entity with a complex etiology, which makes prediction of disease prognosis and clinical outcomes
very challenging [2]. This is further complicated by very limited effective therapeutic strategies. Thus a
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critical unmet medical need pivots around discovery of clinically actionable diagnostic and prognostic

Positive Predictive Value (Precision) 0.8235

and targets for the development of novel therapeutics and risk prediction.
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Advances in microarray and next generation sequencing have enabled molecular classification of

False Discovery Rate 0.1765

subtypes of HCC [3], discovery of driver mutations and increased our understanding of the molecular
taxonomy of the disease. LLarge multi-center and multinational studies such as The Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have performed detailed
analysis of the liver cancer transcriptome and genomes [3]. These primary analysis provide valuable
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insights about the molecular basis of liver cancer. However, despite remarkable progress afforded by
these primary analyses, significant challenges remain. One of the more significant challenges 1s
development of robust algorithms with specificity and sensitivity to accurately identify molecular

diagnostic and prognostic markers and individuals at high risk of dying from the disease. This limited

Ensemble id Gene Protein Product
ENSG00000185664 PMEL
ENSGO0000101335 MYL9
ENSG00000214548 MEG3
ENSGOD000126838 PZP
ENSGOD000133800 LYVEL
ENSG00000142748 FCN3
ENSGOD000082196 C1QTNEF3
ENSGOD000004776 HSPB6
ENSG00000114270 COL7A1
ENSGOD000184557 SOCS3
ENSG00000173918 C1QTNF1
ENSGO0000106366 SERPINEL
ENSGOD000138315 OIT3
ENSG00000126759 CFP
ENSGO0000148346 LCN2

Figure 2.a. To find the best performing model, the accuracy of 4 different classifiers
were compared across 5 p-value thresholds; the p-values were determined through
the differential expression analysis and serve as a cutoff for genes included in the
classifier task so that all genes with a p-value less than the threshold were included
during the trial. The stacked + SVM model achieved the highest accuracy at 82.35%
with a p-value threshold of 1.0*10e-6 (total of 384 genes). The confusion matrix for the
trial is shown to the right. Figure 2.b shows the top 25 differentially expressed genes
between the tumor and normal tissue groups. These genes are hypothesized to hold
the highest predictive value for the classification task.
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progress must be balanced against the recognition that liver cancer is inherently a heterogeneous
disease with complex etiology. Therefore, new and more robust algorithms with sensitivity and
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specificity to accurately identify novel diagnostic and prognostic markers predictive of clinical
outcome are needed to guide therapeutic decisions.

To address this critical unmet medical need, we propose the application of a computational
framework using Machine Learning (ML) with application to gene expression and somatic mutation
data for molecular classification of liver cancer and predicting clinical outcomes. Our working
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hypothesis is that genomic alterations in the tumor transcriptome and genome would lead to

measurable changes that affect therapeutic decision making and that application of ML would enable
development of more accurate algorithms to guide decision making at the point of care. To test this
hypothesis, we used publicly available data gene expression and mutation data on 360 patients
diagnosed with HCC and 136 control samples from the TCGA. The developed methods were

validated on an independent cohort.
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Methods

Liver Hepatocellular Carcinoma (I.LIHC) and normal tissue RNA transcript data was downloaded
through the publicly available The Cancer Genome Atlas (ICGA) database and processed using

Python. The data afterwards was filtered so that any genes without expression values were removed and

balanced so that there were equal tumor and normal sample counts (136 each). Normalization and
feature selection were performed using the EdgeR package in R to identify differentially expressed
genes between the tumor and control groups. The data was re-filtered to include only the differentially
expressed genes identified from the previous step and was subsequently split 75:25 into training and
testing sets. The data sets were trained and tested using a machine learning classitier. This step was
repeated using different subsets of genes based off increasing p-value thresholds as determined by the
differential expression analysis. The classifier was designed using the Weka Python package, and the
outline of the final model can be visualized below (Figure 1); different models were created, tuned, and
tested against the data to determine the best model in terms of sensitivity and specificity of the

classification task. A subset of significant genes were dertved from the best performing model and used

for pathway analysis. The final subset of genes were used to repeat the methodology on tumor data
separated into two groups by outcome (alive or dead).

Stacking

Training Set SN Support Vector Machine (SVM)
SVM with RBG kernel

1

Support Vector Machine (SVM)

Filtered Data

Testing

Figure 1. Schema of the machine learning classifier model. After differential expression analysis the data was filtered to include only
differentially expressed genes. The data was filtered again per trial based off a p-value threshold. The data was split into training / testing
sets and the training set was put into a stacked model followed by a Support Vector Machine classifier. The testing set was then put into
the trained model giving prediction accuracy as an output.
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Results: Comparison by clinical outcome
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Figure 4.a. A confusion matrix of a classification task comparing clinical outcome of disease (alive vs dead). The model was able to
correctly classify 81.67% of 60 samples as either alive or dead. The genes used for this task were based off the genes yielded from the
best performing model from the tumor vs normal tissue comparison. A second differential expression analysis on this core list reorders
the genes based off their presumptive predictive power in the new comparison by outcome. Figure 4.b shows the top differentially
expressed genes between the alive and dead groups. The genes highlighted in yellow are those which also found in the list which
demonstrates the top 25 differentially expressed genes between normal and tumor groups (see Figure 2.b).
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Figure 3. The 384 genes determined by the best machine learning model were input into the STRING
database for pathway analysis. The significant pathways in which these genes are involved in shown above,
ordered by p-value. The KEGG pathway is named in the first column followed by the number of genes in
the list per total genes recognized in that pathway. The top five pathways by gene count were visualized
showing some overlap in the genes involved. These pathways include HTLV-1 infection, Cell Cycle,
MicroRNAs in cancer, PI3K-Akt signaling, and MAPK signaling. The CCND2 gene (Cyclin D2) is found in 4

of 5 top pathways, and E2F1 (E2F Transcription Factor) is found in 3 of 5 top pathways.
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Conclusions

A list of differentially expressed genes were derived from raw transcriptome data and
were demonstrated to be good predictors for tumorigenicity through machine learning
methods. Pathway analysis of the final list reveals genes involved in historically defined
anti-apoptotic and pro-proliferative pathways, as well as those involved in cytokine
sighaling, cellular senescence and differentiation, hepatic disease, and viral infection. 8
genes are known miRNAs involved with cancer, and 7 are proteoglycans in cancer. The
usefulness of the same method is illustrated again by comparing clinical outcome of
disease within the tumor group; the list of genes produced in this step are hypothesized
to explicate the genes most predictive of poor prognosis of disease. Many of the same
genes are significant predictors of cancer compared to normal tissue. The overall method
denotes genes which are apt candidates for biomarker analysis. It is important to reiterate
that cancer 1s an extremely heterogenous disease, even within the same cancer type; the
method doesn’t currently account for subclasses of Hepatocellular Carcinoma, but HCC
tumorgenicity as a whole. Future improvements of the model should aim to cluster the
single tumor group into appropriate subclasses. One way of achieving this goal 1s to
include more robust predictive data such as methylation, histone modification, mutation,
and copy number variant information to increase sensitivity between subgroups..
Nevertheless, this work serves as a formidable outline for any prospective pipeline.
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