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Introduction

Liver Hepatocellular Carcinoma (LIHC) and normal tissue RNA transcript data was downloaded 

through the publicly available The Cancer Genome Atlas (TCGA) database and processed using 

Python. The data afterwards was filtered so that any genes without expression values were removed and 

balanced so that there were equal tumor and normal sample counts (136 each). Normalization and 

feature selection were performed using the EdgeR package in R to identify differentially expressed 

genes between the tumor and control groups. The data was re-filtered to include only the differentially 

expressed genes identified from the previous step and was subsequently split 75:25 into training and 

testing sets. The data sets were trained and tested using a machine learning classifier. This step was 

repeated using different subsets of  genes based off  increasing p-value thresholds as determined by the 

differential expression analysis. The classifier was designed using the Weka Python package, and the 

outline of  the final model can be visualized below (Figure 1); different models were created, tuned, and 

tested against the data to determine the best model in terms of  sensitivity and specificity of  the 

classification task. A subset of  significant genes were derived from the best performing model and used 

for pathway analysis. The final subset of  genes were used to repeat the methodology on tumor data 

separated into two groups by outcome (alive or dead). 

Methods

Despite remarkable progress in patient management, liver cancer remains the fourth leading cause 

of  cancer mortality worldwide [1]. Within the United States, an estimated 42,810 people were 

diagnosed with liver cancer in 2019 and an estimated 30,160 died from the disease, according to the 

American Cancer Society [2]. Sadly, it is one of  the few types of  cancer with increases in both 

incidence and mortality rates of  about 3% per year in the United States [2]. The prevalent liver cancer 

is hepatocellular carcinoma (HCC) accounting for 70%–90% of  all newly diagnosed liver cancers. Well 

supported risk factors include hepatitis B virus/hepatitis C virus (HBV/HCV) infection, nonalcoholic 

steatohepatitis, alcoholism, and smoking [2]. The 5-year survival rate of  HCC varies widely across 

different populations, with an average rate of  less than 32% [1]. It is a highly heterogeneous disease 

entity with a complex etiology, which makes prediction of  disease prognosis and clinical outcomes 

very challenging [2]. This is further complicated by very limited effective therapeutic strategies. Thus a 

critical unmet medical need pivots around discovery of  clinically actionable diagnostic and prognostic 

and targets for the development of  novel therapeutics and risk prediction.

Advances in microarray and next generation sequencing have enabled molecular classification of  

subtypes of  HCC [3], discovery of  driver mutations and increased our understanding of  the molecular 

taxonomy of  the disease. Large multi-center and multinational studies such as The Cancer Genome 

Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have performed detailed 

analysis of  the liver cancer transcriptome and genomes [3]. These primary analysis provide valuable 

insights about the molecular basis of  liver cancer. However, despite remarkable progress afforded by 

these primary analyses, significant challenges remain. One of  the more significant challenges is 

development of  robust algorithms with specificity and sensitivity to accurately identify molecular 

diagnostic and prognostic markers and individuals at high risk of  dying from the disease. This limited 

progress must be balanced against the recognition that liver cancer is inherently a heterogeneous 

disease with complex etiology. Therefore, new and more robust algorithms with sensitivity and 

specificity to accurately identify novel diagnostic and prognostic markers predictive of  clinical 

outcome are needed to guide therapeutic decisions.

To address this critical unmet medical need, we propose the application of  a computational 

framework using Machine Learning (ML) with application to gene expression and somatic mutation 

data for molecular classification of  liver cancer and predicting clinical outcomes. Our working 

hypothesis is that genomic alterations in the tumor transcriptome and genome would lead to 

measurable changes that affect therapeutic decision making and that application of  ML would enable 

development of  more accurate algorithms to guide decision making at the point of  care. To test this 

hypothesis, we used publicly available data gene expression and mutation data on 360 patients 

diagnosed with HCC and 136 control samples from the TCGA. The developed methods were 

validated on an independent cohort. 

Results: Comparison between tumor and control

Results: Comparison by clinical outcome Conclusions
A A list of  differentially expressed genes were derived from raw transcriptome data and 

were demonstrated to be good predictors for tumorigenicity through machine learning 

methods. Pathway analysis of  the final list reveals genes involved in historically defined 

anti-apoptotic and pro-proliferative pathways, as well as those involved in cytokine 

signaling, cellular senescence and differentiation, hepatic disease, and viral infection. 8 

genes are known miRNAs involved with cancer, and 7 are proteoglycans in cancer. The 

usefulness of  the same method is illustrated again by comparing clinical outcome of  

disease within the tumor group; the list of  genes produced in this step are hypothesized 

to explicate the genes most predictive of  poor prognosis of  disease. Many of  the same 

genes are significant predictors of  cancer compared to normal tissue. The overall method 

denotes genes which are apt candidates for biomarker analysis. It is important to reiterate 

that cancer is an extremely heterogenous disease, even within the same cancer type; the 

method doesn’t currently account for subclasses of  Hepatocellular Carcinoma, but HCC 

tumorgenicity as a whole. Future improvements of  the model should aim to cluster the 

single tumor group into appropriate subclasses. One way of  achieving this goal is to 

include more robust predictive data such as methylation, histone modification, mutation, 

and copy number variant information to increase sensitivity between subgroups.. 

Nevertheless, this work serves as a formidable outline for any prospective pipeline. 
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Figure 1. Schema of the machine learning classifier model. After differential expression analysis the data was filtered to include only

differentially expressed genes. The data was filtered again per trial based off a p-value threshold. The data was split into training / testing 

sets and the training set was put into a stacked model followed by a Support Vector Machine classifier. The testing set was then put into 

the trained model giving prediction accuracy as an output. 

Figure 4.a. A confusion matrix of a classification task comparing clinical outcome of disease (alive vs dead). The model was able to 

correctly classify 81.67% of 60 samples as either alive or dead.  The genes used for this task were based off the genes yielded from the 

best performing model from the tumor vs normal tissue comparison. A second differential expression analysis on this core list reorders 

the genes based off their presumptive predictive power in the new comparison by outcome. Figure 4.b shows the top differentially 

expressed genes between the alive and dead groups. The genes highlighted in yellow are those which also found in the list which 

demonstrates the top 25 differentially expressed genes between normal and tumor groups (see Figure 2.b). 

Figure 2.a. To find the best performing model, the accuracy of 4 different classifiers 

were compared across 5 p-value thresholds; the p-values were determined through 

the differential expression analysis and serve as a cutoff for genes included in the 

classifier task so that all genes with a p-value less than the threshold were included 

during the trial. The stacked + SVM model achieved the highest accuracy at 82.35% 

with a p-value threshold of 1.0*10e-6 (total of 384 genes). The confusion matrix for the 

trial is shown to the right. Figure 2.b shows the top 25 differentially expressed genes 

between the tumor and normal tissue groups. These genes are hypothesized to hold 

the highest predictive value for the classification task. 

Figure 3. The 384 genes determined by the best machine learning model were input into the STRING 

database for pathway analysis. The significant pathways in which these genes are involved in shown above, 

ordered by p-value. The KEGG pathway is named in the first column followed by the number of genes in 

the list per total genes recognized in that pathway. The top five pathways by gene count were visualized 

showing some overlap in the genes involved. These pathways include HTLV-1 infection, Cell Cycle, 

MicroRNAs in cancer, PI3K-Akt signaling, and MAPK signaling. The CCND2 gene (Cyclin D2) is found in 4 

of 5 top pathways, and E2F1 (E2F Transcription Factor) is found in 3 of 5 top pathways. 
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