

School of Medicine

Jiande Wu³, Chindo Hicks³

Introduction

- Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, representing 15 to 20% of all newly diagnosed breast cancers annually.
- Clinically, it is defined as tumors lacking expression of the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor-2 (HER-2).
- TNBC patients are at high risk of COVID-19, and those affected tend to have poorer clinical outcomes.
- Sadly, the molecular mechanisms linking TNBC and COVID-19 have not been characterized.

Objective/Hypothesis

- **Objective:** Discover a signature of genes, networks and signaling pathways associating TNBC and COVID-19.
- Hypothesis: Genomic alterations in women diagnosed with TNBC and COVID-19 could lead to measurable changes associating the two diseases, and these alterations affect gene regulatory networks and signaling pathways driving the association between the two diseases.

Materials/Methods

- Gene expression and clinical data on TNBC were obtained from The Cancer Genome Atlas (TCGA).
- Gene expression and clinical data on COVID-19 were obtained from the Gene Expression Omnibus (GEO).
- Immune responsive genes were obtained from Illumina.
- Figure 1 shows project design and execution workflow.

Table 1. Distribution of samples.

Data	TNBC	COVID-19	Immune
Genes	60,483	19,473	1,661
# Cases	115	38	_
# Controls	113	13	-

Mapping the Genomic Landscape of TNBC and COVID-19 Mahir Rahman¹, Michael Stewart^{2,} Aditi Kuchi³, David Otohinoyi³,

1 – Haynes Academy for Advanced Studies 2 – Xavier University of Louisiana

3 – LSUHSC School of Medicine, Department of Bioinformatics and Genomics

This research project was supported through the LSU Health Sciences Center, School of Medicine and the Bioinformatics and Genomics (BIG) Program.

for COVID	
C Analysis	
Value < 0.05	
nalysis	

Signature of genes associated with TNBC Signature of genes associated with COVID-19 = 5,298.Signature of genes associating the two diseases = **1,754** Signature of immune genes associated with both diseases = 152.

Top Canonical Pathways

- Mitotic Roles of Polo-Like Kinase \bullet
- Kinetochore Metaphase Signaling Pathway
- Cyclins and Cell Cycle Regulation

Networks

Figure 3. Gene regulatory networks for genes associated with both COVID-19 and TNBC (blue font), and genes associated with both diseases and immune system (red font).

Conclusions

- Discovered signatures of genes unique to COVID-19 and TNBC. Discovered a signature of genes associated with both TNBC and COVID-19.
- Discovered gene regulatory networks and signaling pathways associating the two diseases.
- Results suggest crosstalk between pathways involved in COVID-19 and pathways involved in TNBC.
- Integrative bioinformatics analysis is a powerful approach to mapping the genomic landscape of TNBC and COVID-19.
- Further research is recommended to validate the results in women diagnosed with both diseases.