Elucidation of the Genomic Landscape of Ovarian Cancer and COVID-19

Michael Stewart¹, Aditi Kuchi², Jiande Wu², David Otohinoyi², Mahir Rahman³ and Chindo Hicks²

Xavier University of Louisiana¹, Department of Genetics and the Bioinformatics Program, Louisiana State University Health Sciences Center, School of Medicine², Haynes Academy for Advanced Studies³

Introduction

• Despite remarkable progress in treatment, ovarian cancer (OC) remains the leading cause of death among gynecological malignancies in women in the US and globally.
• Because of their compromised immune system, women diagnosed with OC are at high risk of COVID-19.
• Thus, the COVID-19 pandemic has presented new challenges in clinical management of OC.
• Sadly, the molecular mechanisms underlying the association between the two deadly diseases have not been elucidated.
• There is an urgent need to address this unmet medical need.

Objective/Hypothesis

• Objective: Discover a signature of genes, network states & signaling pathways associating OC outcomes and COVID-19.
• Hypothesis: Genomic alterations in women diagnosed with OC and COVID-19 could lead to measurable changes associating the two diseases and affecting therapeutic decision making, and that these alterations affect molecular networks and signaling pathways, which in turn affect molecular outcomes.

Materials and Methods

Table 1. Distribution and characteristics of the original data sets used in the investigation.

<table>
<thead>
<tr>
<th></th>
<th>COVID-19 (n=51)</th>
<th>OC (n=375)</th>
<th>Immune</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Probes</td>
<td>19,472</td>
<td>60,483</td>
<td>1,661</td>
</tr>
<tr>
<td>Sample Type</td>
<td>COVID-19 Control</td>
<td>Dead Alive</td>
<td>--</td>
</tr>
<tr>
<td># of Samples</td>
<td>38 13</td>
<td>229 146</td>
<td>--</td>
</tr>
</tbody>
</table>
• Gene Expression (RNA-Seq) and clinical data on COVID-19 obtained from the Gene Expression Omnibus (GEO).
• Gene expression (RNA-Seq) and clinical data on OC obtained from The Cancer Genome Atlas (TCGA).
• Immune responsive genes were obtained from Illumina.
• Figure 1 shows project design and execution workflow.

Results

• Performed supervised analysis comparing cases to controls to identify signatures of genes associated with each disease (OC, COVID-19) (P<0.05).
• Combined and evaluated the two signatures of genes to discover a gene signature for association with both diseases.
• Pathway analysis to discover networks and signaling pathways.

• Discovered a signature of 2,612 genes associated with OC.
• Discovered a signature of 5,298 genes associated with COVID-19.
• Discovered a signature of 241 genes associating OC with COVID-19.
• Validation using immune responsive genes revealed a signature of 21 immune regulated genes associated with both OC and COVID-19.

Conclusions

• Discovered signature of genes unique to each disease (OC, COVID-19).
• Discovered a signature associated with both diseases.
• Discovered networks and signaling pathways associated the two diseases.
• Results suggest pathways crosstalk between OC and COVID-19.
• Integrative bioinformatics analysis is a powerful approach to elucidating the genomic landscape of OC and COVID-19.
• Further research is recommended to validate the results in women diagnosed with both diseases.

This research project was supported by Award Number: DBI-2051440 through the National Science Foundation (NSF), Research Experiences for Undergraduates (REU) Program, LSUHSC-School of Medicine and the Bioinformatics and Genomics Program.
Despite remarkable progress in treatment, ovarian cancer (OC) remains the leading cause of death among gynecological malignancies in women in the US and globally.

Because of their compromised immune system, women diagnosed with OC are at high risk of COVID-19.

Thus, the COVID-19 pandemic has presented new challenges in clinical management of OC.

Sadly, the molecular mechanisms underlying the association between the two deadly diseases have not been elucidated.

There is an urgent need to address this unmet medical need.
• **Objective**: Discover a signature of genes, network states & signaling pathways associating OC outcomes and COVID-19.

• **Hypothesis**: Genomic alterations in women diagnosed with OC and COVID-19 could lead to measurable changes associating the two diseases and affecting therapeutic decision making, and that these alterations affect molecular networks and signaling pathways, which in turn affect prognostic outcomes.
Materials and Methods

<table>
<thead>
<tr>
<th></th>
<th>COVID-19 (n=51)</th>
<th>OC (n=375)</th>
<th>Immune</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Probes</td>
<td>19,472</td>
<td>60,483</td>
<td>1,661</td>
</tr>
<tr>
<td>Sample Type</td>
<td>COVID-19</td>
<td>Control</td>
<td>Dead</td>
</tr>
<tr>
<td># of Samples</td>
<td>38</td>
<td>13</td>
<td>229</td>
</tr>
</tbody>
</table>

- Gene Expression (RNA-Seq) and clinical data on COVID-19 obtained from the Gene Expression Omnibus (GEO).
- Gene expression (RNA-Seq) and clinical data on OC obtained from The Cancer Genome Atlas (TCGA).
- Immune responsive genes were obtained from Illumina.
- Figure 1 shows project design and execution workflow.
Figure 1. Project design and execution workflow.
• Performed supervised analysis comparing cases to controls to identify signatures of genes associated with each disease (OC, COVID-19) (P<0.05).
• Combined and evaluated the two signatures of genes to discover a gene signature for association with both diseases.
• Pathway analysis to discover networks and signaling pathways.
• Discovered a signature of 2,612 genes associated with OC.
• Discovered a signature of 5,298 genes associated with COVID-19.
• Discovered a signature of 241 genes associating OC with COVID-19.
• Validation using immune responsive genes revealed a signature of 21 immune regulated genes associated with both OC and COVID-19.

Figure 3. Figure 3 displays commonalities between the following three groups: DEGs for OC, DEGs for COVID-19 and immune-response genes. The 220 genes shared between OC and COVID-19 as well as the 21 genes shared by all three groups were used for network and pathway analysis.
Figure 3. Molecular networks associating COVID-19 and OC. Genes in blue represent genes that are associated with both COVID-19 and OC. Genes in red represent genes that are associated with COVID-19 and OC and the immune system. Genes in black represent genes that are highly predicted to associate the two diseases.
Figure 5: Signaling pathways [-log(P-value)>2.00] associated with the two diseases. The x-axis shows the –log(P values) and the y-axis shows the pathway names. The yellow line indicates the threshold P-value for significance.
Conclusions

• Discovered signature of genes unique to each disease (OC, COVID-19)
• Discovered a signature associated with both diseases.
• Discovered networks and signaling pathways associating the two diseases.
• Results suggest pathways crosstalk between OC and COVID-19.
• Integrative bioinformatics analysis is a powerful approach to elucidating the genomic landscape of OC and COVID-19.
• Further research is recommended to validate the results in women diagnosed with both diseases.