

### School of Medicine

# **Evaluation of oridonin derivatives with Protacs against** triple-negative breast cancer Gabrielle Vontz, Doerte Raphi Fricke, Ruixia Ma, Junhai Xu, Qiang Shen

## Introduction

Natural products have served as molecular starting points to develop therapeutic agents. Oridonin, a natural kaurene-type diterpenoid enriched in the traditional Chinese medicinal herb *Rabdosia rubescens*, has been used as a backbone molecule to derive potential anticancer drugs. Oridonin derivative compound CYD0618 was identified as a potent anticancer agent inhibiting cancer growth both *in vitro* and *in vivo*<sup>1</sup>. CYD0618 was shown to directly bind and inhibit STAT3, a transcription factor responsible for a signaling cascade that is constitutively active in  $\sim 70\%$  of human cancers, including breast cancer. Recently, PROteolysis TArgeting Chimera (PROTAC) technology has been developed to induce proteasomal degradation of drug targets<sup>2</sup>. PROTAC modifications of experimental STAT3 inhibitors have been explored to improve potency through STAT3-specific degradation; however, none has reached clinical phase applications. Thus, in an attempt to improve anticancer activity of CYD0618, our group has designed several novel CYD0618-based derivatives containing PROTAC modifications. In this project, we characterize the anticancer properties of these CYD0618-PROTAC derivatives by testing their effects on proliferation, colony formation, and apoptosis in a triple-negative breast cancer cell line, MB-MDA-231.

### Methods

Proliferation: Proliferation was assessed using an MTT assay. In brief, viable cells reduce a substrate to a purple product which can be measured by colorimetry. Thus, MTT assays can be used to measure viable cells after a treatment. An initial MTT screen was performed in which MB-MDA-231 cells were seeded, treated with 10 µM of compound for 72 hr., and viable cells were measured and compared to a DMSO control. From this screen, PW1087 was chosen for further characterization. Subsequent MTT assays were performed in which cells were seeded, treated with a DMSO control, 0.1µM, 0.33 µM, 3.33 µM, and 10 µM of each compound. From this data, the  $IC_{50}$ , the concentration at which a compound reduces viability by 50%, was calculated for each compound.

Colony formation: Cells were seeded, treated with a single dose of the labeled concentration of compound, and incubated. After 7 days, colonies were visualized and quantified by fixing with paraformaldehyde and staining with crystal violet.

Apoptosis: Apoptotic cell populations were analyzed using the Muse Annexin V & Dead Cell Kit (Luminex). In brief, cells were seeded, treated with 5 µM of the indicated drug, and collected after 24 hr. or 48 hr. of treatment. Both floating (dead) as well as adhered cells were included in the analysis. The Muse Annexin V protocol was followed to measure live, early apoptotic, late apoptotic, and dead cells. In principle, the kit uses fluorescence to measure 1) annexin V binding to phosphatidylserine, a phospholipid that is externalized during apoptosis and, 2) a dead cell marker.

### **Initial Screen**



This research project was supported through the Stanley S. Scott Cancer Center, Dept. of Interdisciplinary Oncology, School of Medicine, LSU Health Sciences Center

**Department of Interdisciplinary Oncology Stanley S. Scott Cancer Center School of Medicine** 

Louisiana State University Health Sciences Center - New Orleans







From our initial MTT screen, PW1087 was identified as a potential anticancer agent. Proliferation, colony formation, and apoptosis experiments show PW1087 has comparable if not greater potency than parent compound CYD0618 against MB-MDA-231 triple-negative breast cancer cells. Thus, PW1087 shows potential as a potent anticancer agent that utilizes Protac technology to target STAT3.

Future experiments intend to further characterize CYD0618-Protac derivatives by assessing effects on cellular motility, determining molecular interactions with STAT3, and testing antigrowth activity on tumor xenografts.

### <u>References</u>

Shen, X. et al. A thiazole-derived oridonin analogue exhibits antitumor activity by directly and allosterically inhibiting STAT3. J. Biol. Chem. 294, 17471–17486 (2019). Zou, Y., Ma, D. & Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct. 37. 21–30 (2019).



