MicroRNA-Based Biomarker in Alzheimer’s Disease

Vivian R. Jaber¹ & Walter J. Lukiw¹,²,³

¹LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA;
²Departments of Ophthalmology and Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA;
³AG038834 (WJL)

Alzheimer’s Disease:

- Represents a complex, multifactorial, age- and gender-related, progressive neurogenerative disease
- Heterogenous in presentation and pathophysiology
- Multiple factors contribute to AD symptomatic and molecular-genetic heterogeneity

AD Neuropathology Interrelated Features:

- Progressive disorganization dropout of neocortical synapses → synaptic loss & atrophy
- Neuronal cell death and loss of inter-neuronal communication
- Progressive deposition of amyloid-beta peptides and senile plaques aggregates
- Accumulation of hyperphosphorylated tau protein into neurofibrillary tangles
- Inflammatory neurodegeneration primarily in the association neocortex and hippocampal CA1 region
- Alteration in innate immune response

miRNAs in Alzheimer’s Disease

- miRNAs represent a class of ~19-23 nt single-stranded non-coding RNA that are posttranscriptional regulators of mRNA
- ~2650 individual human miRNAs have been characterized → there are only ~20-35 that are neurologically functional species and highly abundant in CNS
- We found at least 5 proinflammatory miRNAs that are consistently upregulated in AD brain
- These miRNAs were found to downregulate several mRNAs that are involved in the pathophysiology of AD
- The multi-system, multi-pathway, and overlapping regulatory roles for pathogenic miRNAs in CNS make them prime candidates for modulating the expression of many mRNA targets in a progressive and complex disease such as AD
- Downregulation of key and AD relevant mRNAs involved in: phagocytosis deficits and tau pathology (TREM2), inflammation (CFH, IRAK1), and amyloidogenesis (TSPAN12)

miRNAs as Biomarkers

- The highly soluble and mobile miRNAs affect the operation of many of the interactive pathogenic signaling pathways and genetic mechanisms in CNS making them:
 - strategic candidates for promoting AD onset and progression of its pathology
 - Potential indicators for predictive and/or diagnostic biomarkers for AD at any stage

miRNAs for Precision Medicine-Based Diagnostics and Therapeutics

- Many molecular pathways that have been implicated in the pathology of AD are identified in the later stages of the disease
- Identification of the earliest signs of AD and implementing miRNA-based biomarker testing during the prodromal stages of the disease would allow for a better understanding of the molecular pathways involved in AD initiation and trajectory
- Precision medicine-based framework would help understand the heterogeneity of the disease and thus develop better diagnostic and therapeutic methods

Special thanks to Yuhai Zhao, PhD
Research supported in part by NIH grants NEI-1-EY106311, NIA-AG18031 and NIH-AG058834 (WJL).