Applicable Neuroradiology

For the Clinical Neurology Clerkship
LSU Medical School
New Orleans

Amy W Voigt, MD
Clerkship Director
Applicable Neuroradiology

Introduction
The field of Radiology first developed following the discovery of X-Rays by Wilhelm Roentgen in 1895. This resulted in widespread clinical use before the damaging effects of ionizing radiation were fully appreciated.
Applicable Neuroradiology

Plain Films of the Skull were the first application of radiological techniques to the field of Neurology and became widespread beginning around 1905.
Applicable Neuroradiology

- Plain Films of the Skull
 - Good for detecting Ca^{++}
 - Good for Skull Fx’s
 - Good for Foreign Bodies
 - Quick way to look for pneumatization of cranial sinuses

- Plain Spine Films
 - Good for vertebral fractures and dislocations
 - Used in evaluation of scoliosis
 - Does NOT image cord however
Applicable Neuroradiology

Pneumoencephalogram
- Air injected into thecal sac through LP
- Reveals the ventricular system
- Causes Headaches (pneumocephaly)
- First use in 1918

parenchymal Ca++ and hydrocephalous due to congenital Toxoplasmosis
Cerebral Angiography

- First used in 1927 via direct percutaneous internal carotid artery puncture
- Useful for defining cerebral vasculature
- Was used to infer tumors or other mass lesions based on the displacement of vascular structures
Computed Axial Tomography

- First developed in the 60’s
- Digital geometry is used to create a 3 dimensional image of the internal aspects from a large series of 2 dimensional X-ray images taken around a single axis of rotation
Computed Axial Tomography

- Has advantages of quick acquisition time
- Excellent for picking up acute intracranial blood
- Uses “Houndsfield Units” to determine the density of structures identified
- Contrast can be used to better define edema or any process where there is breakdown of the BBB
- Bolus contrast administration provides vascular anatomy (CT Angiogram)
- Contrast administration is contraindicated for use with renal insufficiency or prior allergy
Applicable Neuroradiology

CT Angiogram showing a Large MCA aneurysm

Contrast-enhanced CT showing brain abscess and edema
Applicable Neuroradiology

Computed Axial Tomography

- 5 “B” things that are bright (hyperdense) on CT
 - Blood
 - Bone (or Ca++]
 - Brain
 - Bullet (or foreign body)
 - “Bontrast” for “Contrast”
Applicable Neuroradiology

Cranial Ultrasound

- Cranial U/S developed in the 70’s
- Used in infancy as a non-invasive way to view ventricles and look for intraventricular hemorrhage using the anterior fontanelle as a portal
- Used in adults for carotid stenosis/dissection or for cerebral vasospasm
Applicable Neuroradiology

Neonatal Head U/S with Grade III IVH

Carotid Doppler Ultrasound showing ICA stenosis

Cranial Doppler with MCA stenosis
Applicable Neuroradiology

SPECT
- Single Photon Emission Computed Tomography
- Developed in 60’s (along with CT)
- Gamma ray-emitting long-acting isotope (Technetium-99m) shows regional CBF
- Can help localize seizure onset (Ictal-SPECT)
- Can be superimposed on CT or MRI
- More available than PET
Applicable Neuroradiology

Ictal SPECT superimposed upon brain MRI
Applicable Neuroradiology

PET
- Positron Emission Tomography
- Developed in the 70’s
- Detects gamma rays released by a radionuclide tracer linked to a marker
- FDG (Fludeoxyglucose) most commonly used
- Other markers include specific neurotransmitters or their receptors
- Requires cyclotron to make short half-life tracers so not as available as PET
Applicable Neuroradiology

PET showing loss of regional stores of Dopamine in patients with Parkinson’s disease
Magnetic Resonance Imaging

- Developed in the 80’s
- Powerful magnetic fields cause water molecules to align along their dipoles
- Radiofrequency waves produce an electromagnetic field which transiently knocks the molecules out of alignment
- When water molecules re-align within the magnetic field they release energy (photons) which are detected by scanners and following a lot of computer mumbo-jumbo an image is produced
Applicable Neuroradiology

Magnetic Resonance Imaging

- T-1 Imaging
 - Water is dark. Fat (Myelin) is bright
 - Gadolinium contrast used to show breakdown of BBB

- T-2 Imaging
 - Water is bright. Fat is dark.
 - FLAIR (same as T2 except water is “blacked out”)

- Diffusion Imaging
 - Shows restricted Diffusion of water suggesting cell death
 - ADC Mapping takes into account brightness of background T2 signal
Applicable Neuroradiology

Blood on MRI is paradoxical and evolves

- Note the intensity changes as the blood cells break down and lose oxygen
- For ACUTE Blood they are similar to FAT
 - T1 = White
 - T2 = Black
Applicable Neuroradiology

Axial T1 Acute Hemorrhage Axial T2 Acute Hemorrhage
Applicable Neuroradiology

T1 MRI Axial Plane

T1 MRI with Gadolinium showing a brain tumor
Applicable Neuroradiology

T1 Sagital Plane

T1 Coronal Plane
Applicable Neuroradiology

T2 Axial image

T2 and FLAIR of Multiple Sclerosis
Applicable Neuroradiology

Diffusion/Perfusion Mismatch
L MCA Stroke
Applicable Neuroradiology

T.O.F. MR Angiogram of The Cerebral Vessels

Gadolinium Contrast Injected MR Angiogram of the Cervical Vessels
Applicable Neuroradiology

MR Venogram of the Cerebral Sinuses and Draining Veins
Applicable Neuroradiology
Neuroanatomy: CSF Review

- The majority of CSF is produced from in the choroid plexus in the two lateral ventricles.
- It passes through the interventricular foramina to the third ventricle.
- Then, the cerebral aqueduct to the fourth ventricle.
- The fluid passes from the 4th ventricle to enter the subarachnoid space.
Applicable Neuroradiology
Neuroanatomy

Name The Structures
Applicable Neuroradiology

- Globe
- Ethmoid S.
- Mastoid Air Cells
- Clivus
- Frontal S.
- Sphenoid S.
- Int. Acoustic Meatus
Applicable Neuroradiology
Applicable Neuroradiology
Applicable Neuroradiology
Applicable Neuroradiology
Applicable Neuroradiology
Applicable Neuroradiology

- Sylvian Fissure
- Caudate Head
- 3rd Ventricle
- Lateral Ventricle
- Midbrain
- Frontal Lobe
- Temporal Lobe
- Occipital Lobe
Applicable Neuroradiology
Applicable Neuroradiology
Applicable Neuroradiology

- Lateral Ventricle
- Falx Cerebri
- Frontal Lobe
- Occipital Lobe
- Parietal Lobe
Applicable Neuroradiology

T1 Sagital MRI
Applicable Neuroradiology

T1 Saggital MRI
Applicable Neuroradiology

T1 Saggital MRI

- Frontal Sinus
- Sphenoid Sinus
- Pituitary
- Clivus
- Tentorium Cerebelli
- Tongue
Applicable Neuroradiology

T1 Sagital MRI
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI

- Temporal Lobe
- Cerebellar Hemisphere
- Medulla
- Vermis
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI

- Temporal Lobe
- Basilar Artery
- Pons
- 4th Ventrical
- Cerebellar Hemisphere
- Ethmoid Sinus
- Sphenoid Sinus
- Int Carotid Artery
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI

- Frontal Sinus
- Frontal Lobe
- Internal Carotid
- Temporal Tip of Lateral Ventricle
- Temporal Lobe
- Occipital Lobe
- Midbrain
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI

- Splenium of CC
- Frontal White Matter
- Frontal Grey Matter
- Anterior Horn of Lat Ventricle
- Putamen
- Thalamus
- Head of Caudate
Applicable Neuroradiology

T2 Axial MRI
Applicable Neuroradiology

T2 Axial MRI

- Caudate Head
- Putamen
- Globus Pallidus
- Thalamus
- Anterior Limb Internal Capsule
- External Capsule
- Genu of Internal Capsule
- Posterior Limb of Internal Capsule
Applicable Neuroradiology

T2 Coronal MRI
Applicable Neuroradiology

T2 Coronal MRI

- Superior Sagittal Sinus
- Cingulate Gyrus
- Hippocampus
- Sylvian Fissure
- Temporal Lobe
- Basilar Artery
Applicable Neuroradiology

MR Angiogram of Cerebral Vessels
Applicable Neuroradiology

MR Angiogram of Cerebral Vessels
MR Angiogram of Cerebral Vessels
Applicable Neuroradiology

MR Angiogram of Cerebral Vessels
Applicable Neuroradiology

MR Venogram of Cerebral Vessels
Applicable Neuroradiology

MR Venogram of Cerebral Vessels
Applicable Neuroradiology

MR Venogram of Cerebral Vessels

- Superior Sagittal S.
- Straight Sinus
- Transverse S.
- Torcula
- Internal Jugular Vein
What is the Abnormality?
Applicable Neuroradiology

Large MCA Stroke
Applicable Neuroradiology
Applicable Neuroradiology

Intracerebral Hemorrhage
Applicable Neuroradiology
Applicable Neuroradiology

Hemorrhagic Conversion
Applicable Neuroradiology

T1 Axial MRI

FLAIR Axial MRI
Applicable Neuroradiology
Applicable Neuroradiology

- DWI restriction
- ADC Map
- Old Gliosis
Applicable Neuroradiology
Applicable Neuroradiology

- Mass Effect
- Sub Dural Hematoma
Applicable Neuroradiology
Applicable Neuroradiology

Mass Effect

Epidural hematoma
Applicable Neuroradiology
Applicable Neuroradiology

Subarachnoid Hemorrhage
Applicable Neuroradiology
Applicable Neuroradiology

MRI Scans

Without MGd

With MGd
Metastatic Brain Tumors
Applicable Neuroradiology
Hydrocephalus

Transependymal Edema
Applicable Neuroradiology
Applicable Neuroradiology

Syringomyelia
Bonus Round
T2 Axial MRI

4 y.o. with Gelastic Seizures
Applicable Neuroradiology

T2 Axial MRI

4 y.o. with Gelastic Seizures

Hypothalamic Hamartoma
Applicable Neuroradiology

T2 Axial MRI

10 y.o. with Developmental Delay and Epilepsy
T2 Axial MRI

10 y.o. with Developmental Delay and Epilepsy

Schizencephaly/Polymicrogyria
The End