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Abstract 

Objectives / Introduction: 

This presentation aims to demonstrate the performance of existing machine-learning (ML) based pitch detectors, 
especially for handling so-called subharmonic errors. Accurate pitch estimation is vital for objective voice analysis. 
Most acoustic parameters rely on either periods or fundamental frequencies 𝑓𝑜 of vocal cycles with exception of only 
a handful parameters (e.g., cepstrum peak prominence and loudness). In a recent study1, ML algorithms—CREPE2 
and FCN-F03—were shown to outperform the Praat pitch analysis algorithm4, especially in estimating 𝑓𝑜 of the voices 
of head and neck cancer patients. However, the study did not reveal what type of errors these ML algorithms mitigate. 

The present study was focused on analyzing a particular type of pitch estimation error: incorrect selection of an 
integer-divisor of the true 𝑓𝑜 as the estimated. We call this type of error a subharmonic error because it is registered 
mostly when a voice signal is nonmodal and contains subharmonics. The challenge here is that the true fundamental 
frequency of a subharmonic signal is indeed an integer-divisor of the speaking 𝑓𝑜, i.e., the pitch intended by the 
speaker. As such, a pitch detector cannot solely depend on the periodicity of the signal and requires additional 
information to make a correct choice. 

Methods: 

Data: All 709 sustained /a/ recordings of KayPENTAX Disordered Voice Database [5] were included. While each 
recording was processed at once, pitch estimates in a 50-millisecond (ms) interval were pooled for the analysis, 
yielding 16174 total sample points (frames). 

𝑓𝑜 Annotation. The truth values for the fundamental frequency 𝑓𝑜 in all signal intervals were evaluated in three steps. 
First, the initial estimates were gathered from the Praat. Then, these estimated 𝑓𝑜’s were reviewed, and those which 
Praat incorrectly estimated were adjusted manually with a custom computer program. Finally, the estimates were 
refined using the time-varying harmonic model with a gradient-based optimization6. 

Algorithms. Praat pitch detector is based on the autocorrelation function and uses the hidden Markov model (HMM, 
an unsupervised machine-learning technique) as the postprocessor to correct the errors. The default configuration 
was used except for the minimum pitch was adjusted to 60 Hz to handle the lowest 𝑓𝑜 present in the dataset. This 
results in Praat to set its analysis frame size to be 50 ms. The recordings were resampled to 8 kHz first. The CREPE 
algorithm2 uses a six-layer convolutional neural network (CNN) model. The model signals to be resampled to 16 kHz 
with input signal frame size of 1024 samples (64 ms; 28% frame overlap). The original model coefficients were used. 
The FCN-F0 algorithm FCN-F0 algorithm3 is an extension of the CREPE with a 7-layer model, taking input signals 
sampled at 8-kHz. Specifically, the FCN-933 model with input frame size of 993 (124 ms; 148% frame overlap) and 
the original model coefficients were used. Finally, the best Praat pitch candidates before postprocessing (i.e., the 
estimates of an autocorrelation-function based algorithm, ACF) was evaluated as a reference without employing any 
machine learning techniques. 

Performance Metric. To detect subharmonic errors accurately, the output of each algorithm was refined using the 

time-varying harmonic model as the annotated truth. The refined estimate was recorded as 𝑓𝑜. In other words, the 
algorithm output was considered correct if it yields the same harmonic model as the annotated. The ratio of the truth 

and estimated, 𝑓𝑜/𝑓𝑜, was used as the performance metric. 

If 𝑓𝑜/𝑓𝑜 ≈ 1, the estimated 𝑓𝑜 matches the truth (labeled “Correct”). On the other hand, if 𝑓𝑜/𝑓𝑜 is approximately an 
integer greater than 1, the algorithm committed a subharmonic error (labeled “Subh”). Note that this error does not 
guarantee that the signal contains subharmonics as the error can also be caused by chance. Finally, non-integral 

𝑓𝑜/𝑓𝑜 values indicate either that the estimator picked an 𝑓𝑜 with no apparent relationship to 𝑓𝑜 or that the truth 𝑓𝑜 was 

too aggressively annotated (labeled “Other”). To account for a numerical error, 𝑓𝑜/𝑓𝑜 value within ±0.01 of an integer 
was treated as an integral outcome, i.e., either “Correct” or “Subh”. 

Results: 

Out of 16174 frames, 15956 (98.7%) were found to contain periodic behavior with annotated 𝑓𝑜’s. Based on the 𝑓𝑜/𝑓𝑜 
metric, Table 1 shows the overall performance of the pitch detectors. It is apparent that the ACF is prone to making 
subharmonic errors (34.5%) and Praat’s HMM successfully eliminated 75.2% of these errors. For these two 
algorithms, the subharmonic errors are dominant over the other types of errors. Meanwhile, both CNN solutions 
clearly outperform the former two with above 95% correctness. More importantly, they demonstrated their resiliency 
to the subharmonic errors: reduced the amount of subharmonic error by 94.3% for CREPE and 96.1% for FCN-F0 
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relative to ACF. The CREPE and FCN-F0 committed fewer subharmonic errors than the other types. A minor 

downside of both CREPE and FCN-F0 was that they introduced a few frequency-doubling errors (𝑓𝑜/𝑓𝑜 = 0.5; 17 for 
CREPE and 11 for FCN-F0) which Praat had none of and ACF had in 3 frames. 

Table 2 shows how Praat, CREPE, and FCN-F0 improved over ACF. The top row of the table reveals that the CNN 
algorithms selfdom made errors on the frames which the ACF was correct (<1.0%), especially the subharmonic errors 
(<0.2%). In comparison, the HMM postprocessor of Praat incorrectly flipped 1.5% of the correct ACF estimates to 
subharmonic errors. 

 

Table 1: Pitch Detection Outcomes (occurrences) 

 ACF Praat CREPE FCN-F0 

Correct 9830 (61.6%) 13931 (87.3%) 15200 (95.3%) 15335 (96.1%) 
Subh 5506 (34.5%) 1368 (8.6%) 316 (2.0%) 217 (1.4%) 
Other 620 (3.9%) 657 (4.1%) 440 (2.8%) 404 (2.5%) 

Subh, % rel ACF 100.0% 24.8% 5.7% 3.9% 
     

Table 2: Contingency matrix between ACF and other algorithms (occurrences) 

ACF Praat 
 

CREPE 
 

FCN-F0 

Correct Subh Other Correct Subh Other Correct Subh Other 

Correct 9646 152 32  9740 15 75  9762 3 65 
Subh 4269 1209 28  5239 247 20  5315 179 12 
Other 16 7 597  221 54 345  258 35 327 

 

Conclusions: 

The CNN-based pitch detectors—FCN-F0 and CREPE—have demonstrated dominant performance over the pitch 
detector of the widely used Praat software by correctly detecting the pitches on over 95% of the sustained /a/ audio 
frames. Remarkably, these detectors are driven by model coefficients which were trained with synthesized data 
(CREPE) or with speech database without any voice disorder samples (FCN-F0). The CNN detectors especially 
excelled in avoiding committing subharmonic errors likely by learning the details of the cyclic behavior of the signals 
beyond their periodicity. These CNN (and other deep learning) models could improve their performance further by 
training them with clinically relevant data and by using a postprocessing technique similar to Praat. 
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