

Pediatric Cochlear Implantation

Anita Jeyakumar, MD FACS February 2013

Objectives

- Overview of Hearing
- Principles of cochlear implantation
- Specific needs of cochlear implant patients
- Modern advances
- Future trends

History CI

- 18th century Volta 1800
 - Alessandro Volta
 - Discovered electrolytic cell
 - Stimulated auditory system
 - Connected a battery with 2 metal rods to his ears
 - "une recousse dans la tête" Epstein:1989: 34
 - Sensation was momentary and lacked tone

New Era

• House (1976) and Michelson (1971)

- Scala tympani implantation of electrodes

- House implanted several devices
 - Worked for short time
 - Rejected due to lack of biocompatibility
- House teamed with Jack Urban (engineer) to make cochlear implants a reality
 - 1972
 - Speech processor was developed to interface with House 3M single electrode implant
 - First to be commercially marketed

Cochlear Implant

- 2 parts
 - External
 - Microphone
 - Speech processor
 - Transmitter
 - Internal
 - Receiver
 - Stimulator
 - Electrodes

1st Implants in Children

- 1977, France
 - Claude-Henri Chouard implanted 2 kids
 - 10 years and 14 years
 - Implants met with significant resistance from the deaf community world wide

Pediatrics

- 1980
 - FDA allows children ~ 2 to be implanted
 - 1998: age limit dropped to 18 mo
- Currently
 - Age limit 12 months
 - Advanced bionics, Med-El, Cochlear corp.
- Over 70,000 implants world wide
 - Over 50% are children

Pediatric Indications

- 1980s: Bilateral tonal deafness >110 dB HL
 - 1990s: Severe hearing loss >70dB HL
 - Current: <50% open-set sentence recognition with properly fit HA

CI Surgery

Activation

- Unique unforgettable experience
- 2-4 weeks postoperative
- Goals
 - Comfort
 - No Fear
 - Soft whisper
 - Very careful in children

Programming

- Mapping
- Several visits
- T-level
- C-level

- 6 month male
- Full term normal vaginal delivery
 - Failed NBS
 - Failed repeat NBS
 - Diagnostic testing
 - Bilateral profound SNHL
 - Bilateral HA

Outcomes

- 4 factors are of primary importance in CI patients
 - Age at onset of deafness
 - Duration of deafness prior to implantation
 - Progression of hearing loss
 - Residual hearing
 - Educational setting

Ideal Candidate

- Severe to profound SNHL in both ears.
- Functioning auditory nerve
- Lived at least a short amount of time without hearing
- Infants and young children: family willing to work toward speech and language
- Older children: good speech, language, and communication skills,
- Minimal benfit from other kinds of hearing aids
- No medical reason to avoid surgery
- Living in or desiring to live in the "hearing world"
- Realistic expectations about results
- Support of family and friends
 - Appropriate services set up for post-cochlear implant aural rehybilitation

- 16 year old female
- Complaint: bilateral hearing loss
 - Passed NBS
 - Diagnosed at 2 with left hearing loss
 - Having trouble at school
 - No family history of hearing loss
 - No history of trauma, IV antibiotics
 - Very healthy: no surgeries etc

Audiogram

6 months later...

Deaf Advocacy

"social-cultural"

- ASL is defining language
- Minority culture, diminution Balkany, Hodges, & Goodman, 1996
- Being deaf is single most defining event
- Values to be taught by culturally deaf adults

"medical-disability"

• Failure to achieve an expected level of function

Engelhardt 1996

- \$121 billion spent annually on education NIH consensus statement
- Cochlear implantation: the earlier the better

- Outcomes with children who are deaf are *NOT* transferable to children with disabilities
- Effect of hearing loss is underestimated
- Superior benefit with earlier implantation

Disability

- Cons Bertram (2004)
 - Increased complexity
 - Increased counseling especially about limitations
- Pros Bertram (2004)
 - Environmental stimulation for development
 - Awareness of potential dangers
 - Develop greater autonomy

Socioeconomic Disparity

- Substantial differences in rates of implantation Holden-Pitt, 1998; Stern et al. 2004; Fortnum, et al., 2002
 - Race
 - Caucasian and Asian-American 5X higher than Hispanic-American; 10X higher than African-American Stern et al. 2004

Socioeconomic status

- More implanted children live in zipcodes with above-average median incomes Holden-Pitt, 1998
- Presence of additional disability

• 15% versus 20% Holden-Pitt, 1998

Ear Selection

- Preoperative functional status
 - Hearing sensitivity
 - Speech perception
 - Better residual hearing = superior speech recognition
- Clinical status of the ears
 - Anatomic status of the ears

Ear: Right or Left?

- Right ear advantage Gadea et al 1997
 - Left hemisphere dominant for speech and language processing
 - As young as 4 days old Bertoncini J et al. 1989
 - Contralateral auditory pathway stronger
 - Children with right HL more at risk for academic difficulty Oyler et al 1998

Ear: Right vs Left

- Henkin et al 2008
 - 71 prelingual deaf, < 48mo, 30 right, 41 left</p>
 - Small but significant right ear advantage
- Functional MRI Henkin Y et al 2004
 - Right CI similar to normal hearing
 - Left CI similar to unilateral deafness

Bimodal Hearing

- Multichannel implant for profound SNHL = hearing aid for severe loss Geers AE et al, 1994
- Bimodal: CI + HA
- Benefits Clark GM et al 1999; Ching TY et al 2004
 - Better sound localization
 - Improved hearing in noise
 - But still much worse than hearing patients
 - Improved head shadow
 - Loudness summation

Future Advances

- Smaller device
- Completely implanted device
 - Battery issues
- Less traumatic surgery
- Minimally invasive surgery
- Thinner electrodes
 - **Insertion sites into the cochlea**

Who pays?

• 1 CI

Most insurance companies

• 2nd CI

Denied by most insurance companies

- CHAP program
- Hearing Foundation

- Medical costs
 - \$45,000 to \$125,000
 - Includes
 - Evaluation
 - Surgery itself
 - Hardware (device)
 - Hospitalization
 - Rehabilitation

Children's Hospital

- 1st surgery - 10/31/2007
- Total 108
- Following 162 kids

Year	Surgery #
2007	3
2008	11
2009	16
2010	25
2011	26
2012	27

Special Needs

- Immunizations
 - CDC guidelines
 - Pneumovax
- MRI restrictions

loons

- None for CT or plain films
- Static
 - Plastic playgrouds

Special Needs

- Trauma
 - Contact sports
- Metal detectors
 - Bracelets
- Zinc batteries
 - Choking hazard

Team Approach

Conclusions

- Cochlear implants are amazing
- Lot to learn & understand
- Continued research...

References

- 1. Gstoettner W, Kiefer J, Baumgartner WD, Pok S, Peters S, Adunka O. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol 2004;/124:/ 348_/52.
- 2. Adunka O, Kiefer J, Unkelbach MH, Lehnert T, Gstoettner W. Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 2004;/114:/1237_/41.
- 3. Briggs R, Tykocinski M, Saunders E, Dahm M, Hellier W, Pyman B, et al. Surgical implications of perimodiolar electrode designs: avoiding intracochlear damage and scala vestibuli insertion. Cochlear Implant Int 2001;/2:/135_/49.
- 4. Roland PS, Wright CG, Isaacson B. Cochlear implant electrode insertion: the round window revisited. Laryngoscope 2007;117: 1397Y402.
- 5. Adunka OF, Radeloff A, Gstoettner WK, et al. Scala tympani cochleostomy II: topography and histology. Laryngoscope 2007; 117:2195Y200
- 6. Wardrop P, Whinney D, Rebscher SJ, et al. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion and HiFocus II electrodes. Hear Res 2005;203:68Y79.
- 7. Balkany, T., Hodges, A., & Goodman, K. (1996). Ethics of cochlear implantation in young children. Otolaryngology: Head and Neck Surgery, 114, 748–755.
- 8. Tucker, B. (1998). Deaf culture, cochlear implants and elective disability. Hastings Center Report. 28(4), 6–14.
- 9. Francis HW, Yeagle JD, Bowditch S, et al. Cochlear implant outcome is not influenced by the choice of ear. Ear Hear 2005;26: 7SY16S.
- 10. Firszt JB, Gaggl W, Ulmer JL. Ear of deafness affects hemispheric lateralization in participants with unilateral profound hearing loss.
- 11. Paper presented at: 5th International Symposium on Objective Measures in Cochlear and Brainstem Implants; May 9Y12, 2007; Varese, Italy.
- 12. Dodds A, Tyszkiewicz E, Ramsden R. Cochlear implantation after bacterial meningitis: the dangers of delay. Arch Dis Child 1997; 76:139Y40.
- 13. Balkany T, Gantz B, Nadol JB Jr. Multichannel cochlear implants in partially ossified cochleas. Ann Otol Rhinol Laryngol Suppl 1988;135:3Y7.
- 14. Roland PS, Wright CG. Surgical aspects of cochlear implantation: mechanisms of insertional trauma. Adv Otorhinolaryngol 2006;64:11-30
- 15. Gantz BJ, Turner CW. Combining acoustic and electrical hearing. Laryngoscope 2005;115:1726–30
- 16. Richter B, Jaekel K, Aschendorff A, Lohnstein P, Husstedt H, Nagursky H, Laszig R (2001) The Nucleus Contour electrode array: a radiological and histological study. Laryngoscope 111: 508–514.

