Kurt J. Varner, Ph.D.
Research Interests
Research interests involve determining the mechanisms by which oxidative stress produces
cardiac dysfunction. There are currently 2 major areas of research interest in my
laboratory.
1) We are also studying the cardiovascular and cardiac toxicity produced by the inhalation
of combustion-generated fine and ultrafine particulates. Our colleagues data show
that these combustion generated particles may contain environmentally persistent free
radicals (EPFR). Our studies are addressing the hypothesis that that these EPFRs
produce cardiac toxicity by the combined actions of lung-derived systemic inflammation
and localized oxidant and inflammatory actions at the level of the heart. 2) The
second project involves the examination and characterization of the cardiac, cardiovascular,
cardiovascular reflex and sympathetic nerve responses elicited by the acute and chronic
administration of sympathomimetic stimulants. Biochemical, molecular biological and
proteomic approaches are being used to identify the mechanisms underlying stimulant
induced cardiac dysfunction.In addition, I am the director of the Cardiovascular Function
Core Facility in the Department of Pharmacology at LSUHSC.
Project 1 |
Project 2 |
![]() |
![]() |
Publications
Lord, K., Moll, D., Lindsey, J.K., Mahne, S., Raman, G., Dugas, T., Cormier, S., Troxlair, D., Lomnicki, S., Dellinger, B and Varner, K.J. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo. J. Receptor Sig. Trans. 31:157-167, 2011. PMC3152960.
Katz, PS, Trask, A.J., Souza-Smith, F.M., Hutchinson, K.P., Galantowicz, M., Lord, K.C., Stewart, J.A., Cismowski, M.J., Varner, K.J. and Lucchesi, P.A. Coronary arterioles in Type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with decreased vessel stiffness. Basic Res Cardiol. 106(6):1123-1134, 2011. PMC3229644.
Souza-Smith, F.M., Katz, P.S., Trask, A.J., Stewart, J.A. Jr, Lord, K.C., Varner, K.J., Vassallo,
D.V., Lucchesi, P.A. Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling. PLoS One. 6(8):e23337, 2011. PMC3150429.
Feng, Y., Hans C.P., McIlwain E., Seth D., Navar L.G., Varner K.J. and Lazartigues E. Angiotensin-converting enzyme 2 over expression in the central nervous system reduces angiotensin-II-mediated-cardiac hypertrophy. PLoS One, 7(11) e48910, 2012. PMC3498357
Mahne, S., Chuang, G.C., Pankey, E., Kiruri, L., Kadowitz, P.J., Dellinger, B. and Varner, K.J. Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure. Am. J. Physiol. Heart and Circ. Phys. 303: H1135-1142, 2012. PMC3517644.
Varner, K.J., Daigle, K., Weed, P.F., Lewis, P.B., Mahne, S.E., Sankaranarayanan, A. and Winsauer, P.J. Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharm 225:675-685, 2012. PMC3538107.
Kelly, M., Hebert, V., Thibeaux, T., Orchard, M., Hasan, F., Cormier, S., Thevenot, P., Lomnicki, S., Varner, K., Dellinger, B., Dugas, T. Model Combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species. Chem Res Tox, in press 2013.