DISEASE IN NON-HIV: SPECTRUM AND CHALLENGES

"WHO DAT MOTT"
Juzar Ali MD, FRCP(C), FCCP
LSU Health Sciences Center – LSU HEALTH Alumni Klein Professor of Medicine
Section Pulmonary/Critical Care & Allergy/Immunology
Director LSUHSC -Wetmore Mycobacterial Disease/NTM Program
University Medical Center - NTM (Non-Tuberculosis Mycobacterial) Disease Clinic

www.lsudocs.com www.lsuhsc.edu
http://www.medschool.lsuhsc.edu/tb/
http://ntm.lsuhsc.edu
DISCLOSURES

• Consultant / Speaker’s Forum: Oxford Immunotec
• Consultant / Advisory Board / Speaker: INSMED

• Study PI / Co-PI: INSMED 212/312 (Inhaled Liposomal Amikacin for refractory MAC)
• Study PI / Co-PI: INSMED Willow Study (Non-CF Bronchiectasis)

• Acknowledgment: Some slides prepared by Dr Nicole Lapinel, Asst Prof LSUHSC – Co-Director Wetmore-NTM Program
OBJECTIVES

At the end of the presentation, the participants will:

• Have an overview of the spectrum of NTM presentations in clinical practice
• Appreciate the challenges clinicians encounter in management of NTM Pulmonary Disease with the “ABCDEFG pathway”
• Be able to gauge the importance of programmatic multi-disciplinary approach in management

•
A ‘BUG’ BY (M)ANY OTHER NAME(S)

WHO DAT MOTT?

• Anonymous
• Atypical
• Unclassified
• Unknown
• Tuberculoid
• Environmental
• Opportunistic
• MOTT/NTM
Challenges in management of NTM Pulmonary Disease

1. Awareness and lack there of
2. Significance related to cost of HealthCare
3. Myriads of Presentations
4. Management strategies ABCDEFG towards Connecting the Partners in Care
5. Mycobacterial ID, Culture/Sen Complexities
6. GBT background
7. Use of Secondary Drugs and issues thereof
8. Injectables and AG use and logistics thereof
9. Response / Tolerance Ratio
10. Judicious use of the “New kid/s on the Block”
NTM PULMONARY DISEASE IN THE UNITED STATES

Figure 1. Prevalence of pulmonary nontuberculous mycobacteria cases among a sample of U.S. Medicare Part B enrollees aged 65 and older, 1997 to 2007. NTM = nontuberculous mycobacteria.
3 Southern Coastal Parishes identified within the cluster in Louisiana:
- Plaquemines
- Jefferson
- St. Bernard

Previous nationwide study on NTM in CF patients:
- Orleans Parish = highest NTM prevalence among 21 sites
1st study describing environmental/socioeconomic determinants of PNTM disease clustering by county

5% sample of > 65 yo Medicare Part B beneficiaries, 1997-2007

Included 2.3 million individuals: 16,508 PNTM claims representing 2,548 unique cases (~6.5 NTM claim/case)

Counties located in clusters had:
- greater population densities
- higher median household income levels
- higher max/min temperatures
- greater proportion of area as surface water
- higher daily evapotranspiration
BURDEN OF PULMONARY NTM IN THE UNITED STATES

• Based on 2003 – 2007 Medicare data
• Projected 8% annual increase in prevalence
• Estimated 86,244 cases in 2010 at an annual cost $815 million; 87% inpatient
• 70% of NTM disease cases occurred in oceanic coast line & gulf states
• Medication cost: 76% of all total cost

HOW BIG A PROBLEM IS THIS?

• Based on high prevalence of PPD reactivity to MAC : High

• Based on culture ID in lab specimens : High* increased prevalence from 20 to 47/100K in a 10 year period ending 2007; Increased in the western and SE states; more in Asian Pacific Islanders

• 40 % more likely to die if associated with co-morbid conditions** That is the key

• Based on reportability : Unknown
NTM Can Live as Planktonic Mycobacteria or in Biofilm Colonies

- NTM exist in the planktonic state and form biofilms on various surfaces (eg, pipes, catheter films, rubber surfaces)1-4

- The ability to attach to pipe surfaces as biofilm prevents NTM from being washed out of municipal drinking water systems5

- NTM grown in catheter biofilms are significantly more resistant to antibiotics than those grown in suspension3

\textbf{SEM view of} \textit{Mycobacterium smegmatis} biofilm6
Surrounded by Mycobacteria: NTM in the Environment1,2

- Soils, especially acidic pine forest and coastal swamp soils
- Dusts from agriculture, garden, and potting soils
- Drainage waters from acidic pine forest and coastal swamp soils
- Natural waters
- Drinking waters
- Water and ice from refrigerators
- Water from granular-activated charcoal filters
- Aerosols from natural and drinking waters
- Shower aerosols
- Spas and hot tubs
- Aerosols from indoor humidifiers
- Mist from indoor swimming pools

PROVEN ROUTES OF NTM INFECTION

• 1) Matching **pulsed field gel electrophoresis patterns** of M. avium isolates from AIDS patients, Charles River water & drinking water in Boston

• 2) Matching **rep-PCR patterns** of M. avium isolates from a patient & **their showerhead**

• 3) M. avium infected patients & isolates from their **household plumbing**

• 4) Identical **16S rRNA sequences** of NTM isolates from patients & their **potting soils**

• 5) Similarity of **RFLP patterns** among human & porcine isolates indicates close genetic relatedness, suggesting that *M. avium* is transmitted **between pigs and humans**
PROPOSED MECHANISMS OF PATHOGENESIS

• **Susceptible patient:**

 • Chest wall abnormality

 • **Anatomical lung abnormality**

 • Mendelian abnormality***

• **Immunosuppressed**

 • Autoimmune on anti-TNF-alpha
 • HIV/AIDS
 • Active malignancy on chemo/radiation
 • Steroids
 • Primary immunodeficiency

• **PULMONARY NTM DISEASE = Gene Variants + Environmental Exposure + Susceptibility**
I. WHY SURVIVAL AND IMMUNE EVASION?
THE MICROBE

- Biofilm formation, Cell wall characteristics blocking vacuolar acidification
- Inhibition of phagosome-lysosome fusion
- Anaerobic intracellular environment
- Induction of NTM related genes that enhance replication
- Inhibition of the host macrophage function and lymphocyte proliferation
THE GPL* DIFFERENCE : MICROBE

- Produced by NTM and not MTB
- Impacts colony morphology
- Smooth variants with nsGPL are cleared but rough variants without nsGPL evolve and persists
- The severity and persistence of disease depends upon the transition between smooth and rough variants. The variation and presence or absence of nsGPL and ssGPL dictates intracellular survival
- Serovariable oligosaccharides contribute to species specific pathogenesis.
- This coupled with biofilm formation dictates immune evasion and survival of NTM
NTM MGM & TREATMENT LIMITATIONS

- Methods of identification (accuracy, timeliness, availability)
- Not a reportable disease
- Mycobacterial evasion / inefficient treatment options:
 - **Intrinsic** resistance
 - **Macrophage** barrier (intracellular) to Rx
 - **Hydrophobicity** of NTM with drugs being hydrophilic in nature (e.g. more hydrophobic drugs - rifabutin as opposed to rifampin)
 - **Cell wall associated permeability** barrier (e.g. M. Chelonei; hence ethambutol in combination a better choice)
 - **Caseum growth** & nonreplicating state of persistence
 - **Mucus growth** (e.g. M. abscessus undergo phenotypic switch in mucus niche)
 - **Biofilm growth** (NTM in biofilms are ten times less susceptible)
- Poor correlation between in vitro and therapeutic efficacy
- Multi strain sero-variance (e.g. AIDS patients; subjects with nodular/bronchiectasis disease pattern and NTM cross migration)
- **Adaptive** resistance due to continual exposure
2. **Why survival and immune evasion?***

The HOST FACTORS

Induction of macrophage apoptosis by down regulation of Bcl-2 gene

Absence of or sluggishness of the T helper lymphocyte or NK innate immunity
Pulmonary Disease Risk : Host Factors

<table>
<thead>
<tr>
<th>NTM Risk Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary conditions</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>COPD</td>
</tr>
<tr>
<td>Prior TB</td>
</tr>
<tr>
<td>Bronchiectasis Primary/Secondary</td>
</tr>
<tr>
<td>Silicosis/Fibrosis</td>
</tr>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>Lung cancer</td>
</tr>
<tr>
<td>GERD</td>
</tr>
<tr>
<td>Persons living with HIV/AIDS</td>
</tr>
<tr>
<td>Soil exposure</td>
</tr>
<tr>
<td>Alcohol abuse</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Low body weight</td>
</tr>
<tr>
<td>Steroid use/Immune deficiency / suppression</td>
</tr>
</tbody>
</table>

Lady Windermere Syndrome Associated with Preexisting Body Morphotype

Women with NTM lung disease (n=60)

- Height: 164.7 cm
- Arm: 28.7 cm
- Waist: 74.2 cm
- Thigh: 44.6 cm
- BMI: 21.1
- Weight: 57.2 kg

Controls

- Height: 161.0 cm
- Arm: 31.8 cm
- Waist: 95.1 cm
- Thigh: 51.6 cm
- BMI: 28.2
- Weight: 73.1 kg

BMI: body mass index.

*P<0.001. Data for control subjects derived from the National Health and Nutrition Examination Survey and matched for age, sex, and race.

Host Susceptibility Factors for NTM Lung Disease

<table>
<thead>
<tr>
<th>Study description</th>
<th>RR, OR, or relative prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchiectasis</td>
<td>44.0-187.5</td>
</tr>
<tr>
<td>Low body weight</td>
<td>9.09<sup>a</sup></td>
</tr>
<tr>
<td>Thoracic skeletal abnormalities</td>
<td>5.4</td>
</tr>
<tr>
<td>Lung cancer (neoplasms of larynx, trachea, and bronchus)</td>
<td>3.4</td>
</tr>
<tr>
<td>Immunomodulatory drugs/anti-TNF agents</td>
<td>1.3 (undefined) 2.2 (anti-TNF agents)</td>
</tr>
<tr>
<td>COPD</td>
<td>2.0-10.0</td>
</tr>
<tr>
<td>Steroid use</td>
<td>1.6-8.0</td>
</tr>
<tr>
<td>RA</td>
<td>1.5-1.9<sup>b</sup></td>
</tr>
<tr>
<td>GERD</td>
<td>1.5<sup>a</sup>-5.3<sup>b</sup></td>
</tr>
</tbody>
</table>

GERD, gastroesophageal reflux disease; HIV, human immunodeficiency virus; OR, odds ratio; RA, rheumatoid arthritis; RR, relative risk; TNF, tumor necrosis factor.

^a Estimated from data in paper.

^b Hazard ratio, fully adjusted for age, sex, income, rurality, and comorbidities for NTM (HIV, COPD, asthma, and GERD).
PERSPECTIVE : NTM NOT A BIG DEAL?**

• **Thus: either the bug is stupid or the host is smart?

***Yes it is seen more

• ***The bug is not stupid and if we combine the smart bug with the inadequate host response:

“Houston: we have a problem”
RESULT / SEQUELAE LEADING TO THE MANY FACES OF NTM PULM DISEASE

- Resultant Granuloma formation
- Release of cytolytic and cytotoxic enzymes to form either a cavity, necrotic nodules

Resulting in PRIMARY BRONCHIECTASIS / F/C disease

or F/N disease with traction like cylindrical bronchiectasis
If the question refers to chicken eggs specifically, the answer is still the egg, but the explanation is more complicated. The process by which the chicken arose through the interbreeding and domestication of multiple species of wild jungle fowl is poorly understood, and the point at which this evolving organism became a chicken is a somewhat arbitrary distinction. Whatever criteria one chooses, an animal nearly identical to the modern chicken (i.e., a proto-chicken) laid a fertilized egg that had DNA identical to the modern chicken (due to mutations in the mother's ovum, the father's sperm, or the fertilized zygote).

Put more simply by Neil deGrasse Tyson:

"Which came first: the chicken or the egg? The egg — laid by a bird that was not a chicken."

Alternatively, if the question refers specifically to the chicken egg as it exists today, the answer may be different. Chickens produce a protein, ovocleidin-17 (OC-17), that is expressed in the uterus and causes the formation of the thickened calcium carbonate shell around modern chicken eggs. Because OC-17 is expressed by the hen and not the egg, the bird in which the protein first arose, though having hatched from a non-reinforced egg, would then have laid the first egg having such a reinforced shell: the chicken would have preceded this first 'modern' chicken egg. This is only the case, however, if OC-17 arose after the domestication of their wild-fowl ancestors gave rise to chickens.
Thus some known or unknown insult or continuum of insult or an immune or airway deficiency (Aka Jungle Fowl)

Lead to Bronchiectasis (chicken with OC 17 protein)

Leading to NTM (Thickened Egg shell)
UNDERSTANDING THE MANAGEMENT PATHWAY “ABCDEF G”

• A: AIRWAYS EVALUATION & CLEARANCE
• B: BRONCHIECTASIS
• C: CO-MORBID UNDERLYING ASSOCIATED CONDITIONS
• D: DISEASE INFECTION ITSELF
• E: ENVIRONMENTAL FACTORS
• F: $\$$ CONNECTING THE PPPs
• G: GI ISSUES CONTRIBUTING
Defense mechanisms of the respiratory tract

Upper respiratory tract (nose, oropharynx, larynx)
- Mechanical
 - Nasal hairs and sneezing
- Nasal, oropharyngeal and sinuses ciliated epithelium
- Saliva, mucus
- Vocal cords
- Innate immunity
 - Complement
 - Proteases
- Lactoferrin
- Acquired humoral immunity
 - Secretory immunoglobulin (Ig-A and IgM)
Defense mechanisms of the respiratory tract

Lower respiratory tract (tracheobronchial tree)

Upper airway dysfunction
Mechanical
Mucociliary clearance
Cough and impaction on bronchial branching
Acquired cellular immunity
Blunted phagocyte response
Bronchial-associated lymphoid tissue (BALT)
Humoral immunity
Secretory IgA and IgM
Defense mechanisms of the respiratory tract

Lung parenchyma (alveoli and lung interstitium)
Surfactant products (SP-A, SP-B, SP-D)
Phagocytic cellular mechanisms
Resident alveolar macrophages
Phagocytosis
Oxygen and nitrogen metabolites
Lysozyme, acid hydrolases
Recruited polymorphonuclear neutrophils
(from pulmonary microvessels)
Phagocytosis
Oxygen and nitrogen metabolites
Lactoferrin, defensins (human neutrophil peptides 1–4)
Bacterial/permeability increasing protein
Cationic antimicrobial protein (CAP/azurocidin)
UNDER THE CLOUD OF INCIPIENT OR OVERT BRONCHIECTASIS:
PRINCIPLES OF MANAGEMENT

• GOALS
 • Reduce symptoms
 • Maintain lung function
 • Prevent exacerbations
 • Watch for red alerts monitoring BSI scores etc

• TREATMENT OPTIONS
 • Antibiotic therapy
 • Airway Clearance / Mucolytics
 • Anti-inflammatory agents with caution
 • Respiratory conditioning
 • Surgery in selected cases (localized)
AIRWAY CLEARANCE

- Options
 - Traditional CPT/postural drainage
 - Oscillatory positive expiratory pressure (PEP) (i.e. Aerobika, Acapella)
 - High frequency chest wall oscillation (The VEST)
 - Autogenic drainage
 - Active cycle breathing with huff coughs
INFECTION, INSULT PLUS IMPAIRED HOST*

Host response
1. **Unopposed** Neutrophilic elastase and Neutrophilic serine proteinases NSP activity*
2. Oxygen intermediates
3. Inflammatory cytokines

- Blocked by AIAT
- Could be blocked by inhibitor agents

At an anatomic level
- Inflammation /edema/ulceration/neovascularization
- Irreversible bronchiolar dilatation and tissue destruction

At the cytokine level
- Increased mucus secretions
- Inhibition of mucociliary clearance

Impaired host
1. Defect in host defense**
2. Defect in clearance
3. Defect in flow (OAD)

In Non CF:
- CFTR variants with single mutations
- Association with Vit D deficiency
Add to the mix the **underlying structural disease/co-morbid state**
Type 3-4 Sarcoid/ IPF / COPD /Old TB

With its anatomical distortion and secondary bronchiectasis

.........

.................and we have...Case # 1 ..
• CC: Dyspnea

• 63 yo F with progressive **shortness of breath, fatigue** and unintentional **weight loss** of 15 lbs. Also complains of intermittent nonproductive cough.

Hx: Sarcoidosis (Type V), Pneumothorax, Chronic hypoxemic resp failure, DM, pancreatic& adrenal insufficiency, HTN, Pulm MAC (tx 1990s)

• Social Hx: 10pk/hrs (quit 30yrs ago)

• Meds: Methotrexate, Hydrocortisone, Insulin
CASE #1

• **Pulmonary Function Test**
 • FEV1/FVC = .53
 • FEV1 = 0.55 (26%)
 • FEF25-75% = 0.26 (13%)
 • TLC = 59%, RV = 91%
 • DLCO = 19%
 • **Very severe obstruction with moderate restrictive lung disease and severely reduced DLCO.**

• **Microbiology**
 • 11/2013: Smear (-), Group IV RGM
 • 7/2017: Smear (-), *M. abscessus*
 • 8/2017: Smear 1+, MAC
 • 9/2/17: Smear 2+, *M. abscessus (1 CFU) + ESBL Klebsiella pneumonia*
 • 9/3/17: Smear 2+, *M. abscessus (<10 CFU)*
 • 9/23/17: Smear (-), negative
 • 5/2018: Smear 2+, *M. abscessus (10-50 CFU)*
CASE #1

• DIAGNOSIS: Fibrocavitary disease due to MAC + M. Abscessus

• Treatment Course
 • IV Ertapenem for ESBL Kleb
 • Started on **DAILY** Rifampin / Ethambutol / Azithromycin + IV Amikacin
 • IV Amikacin discontinued after 2 weeks
 • REA held after 4 months

• Challenges
 • Cellulitis d/t PICC line
 • Weight loss - down 25lbs from baseline
 • Tinnitus; Vision changes – adverse rxn to meds?
 • Cholecystitis req surgical intervention

• Action item: Limited options/ Specific SE / second line drugs? vs Suppressive Rx?
COMMON CLINICAL RX CHALLENGES

- Who to treat?
- How long to treat?
- Which regimen is ideal?
 - Drug intolerance
 - Drug side effects
 - Drug-drug interactions
- How do patients afford their lengthy/complicated medication regimen?
- Are susceptibility data reliable?
CASE #2

• **CC:** Chronic cough and fatigue

• 79 yo Caucasian F with chronic cough productive of whitish sputum present since 2003. Cough had been worse at night. She always noticed intermittent PND but not significant rhinorrhea; also with heartburn symptoms. She uses her Albuterol nebulizer 1-2x/day noting significant improvement in airway clearance. She denies fever, chills, N/V/D or night sweats. She reports 5 lb weight loss over 3-5 months despite decent appetite. She denies SOB at baseline but is no longer able to play tennis due to significant dyspnea and fatigue.

• **PMHx:** Chronic rhinitis, GERD, HTN, Osteopenia

• Social Hx: Never smoker; Former gardener (noting "I avoid the dirt now because of all the germs.")

• Meds: Flonase NS, Protonix, Singulair, Albuterol inh/nebulizer

• **PE:** thin, asthenic elderly female, bronchial BS LLL, rales RLL
CASE #2

• **Pulmonary Function Test**
 - FEV1/FVC = .57
 - FEV1 = 1.02 (60%) → 1.15 post BD
 - FEF25-75% = 0.38 (25%)
 - TLC = 115%, RV = 162%
 - DLCO = 88%
 - Moderate obstruction with significant post BD response and air trapping.

• **Microbiology**
 - 2017: Sputum AFB x 3 = smear negative; MAC via liquid culture
 - 2017: Sputum Bacterial culture = negative
 - 2013: BAL = MAC; Pseudomonas
CASE #2

• Diagnosis: classic "Lady Windermere Syndrome"

• Recommended Treatment:
 • Rifampin / Ethambutol / Azithromycin three times weekly
 • Albuterol nebulizer 2-3x daily for airway clearance
 • Rhinitis: Flonase/Antihistamine
 • GERD: H2B

Challenges:
• Patient complained of nausea and diarrhea on days she would take her meds preventing her from leaving the house
• Advised: Azithromycin AM, Ethambutol qhs, Rifampin qhs
• ACTION ITEM: TAILOR THERAPY ADMINISTRATION
CASE #3

• CC: Abnormal Chest CT + chronic cough
• 57 yo Caucasian F with nonproductive cough intermittently for “a few years” – worse in Spring/Fall. Had episode of scant hemoptysis, spontaneously resolved, but prompted bronchoscopy for further evaluation. Cough somewhat more productive of clear/white sputum since bronch. No shortness of breath. Some postnasal drip. No fever, chills, night sweats, weight loss. No established pulm history but recalls repeated episodes of bronchitis in early adulthood.

• PMHx: Breast ca s/p mastectomy/Chemo/XRT with metastatic recurrence
• Social hx: never smoker; gardener spring/fall; accountant
• Microbiology: BAL AFB smear 1+, Culture = MAC; all other micro and cytology negative
CASE #3

- **Pulmonary Function Test**
 - FEV1/FVC = .72
 - FEV1 = 2.06 (80%)
 - FEF25-75% = 1.46 (60%)
 - TLC = 104%, RV = 123%
 - DLCO = 69%
 - **No obstruction, gas trapping with mildly reduced DLCO.**

- **Microbiology:** BAL AFB smear 1+, Culture = MAC; all other micro and cytology negative
CASE #3

DIAGNOSIS = Mild nodular bronchiectasis disease due to MAC with BAL positive

• **To TREAT or NOT TO TREAT?…**

• .. Recommended Treatment:
 • Rifabutin/Rif / Ethambutol / Azithromycin THREE times weekly

• Considerations:
 • DDI with Chemotherapy regimen (Rifampin vs Rifabutin)

• Challenges:
 • Adverse rx to Rifabutin: High fever, N/V/D, 5lb weight loss, arthralgia/myalgias, debilitating fatigue
 • **Action item:** Rx worse than problem : Rifamycin s/e
 • Options Rif vs RB/ vs non RIF regimen
Treatment Options

GBT AND/OR

<table>
<thead>
<tr>
<th>Drug/Stage</th>
<th>Target/Details</th>
<th>For M. abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCB01-0371</td>
<td>Target 50S ribosome</td>
<td></td>
</tr>
<tr>
<td>PIPD1</td>
<td>Target MmpL3</td>
<td></td>
</tr>
<tr>
<td>Indole-2-carboxamides</td>
<td>Target MmpL3</td>
<td></td>
</tr>
<tr>
<td>Thiacetazone derivatives</td>
<td>Target FAS-II dehydratase</td>
<td></td>
</tr>
<tr>
<td>Clofazimine</td>
<td>Target NDH-2</td>
<td></td>
</tr>
<tr>
<td>Bedaquiline</td>
<td>Target ATP synthase</td>
<td></td>
</tr>
<tr>
<td>β-lactams with avibactam</td>
<td>Target penicillin-binding protein</td>
<td></td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Target RNA polymerase</td>
<td></td>
</tr>
<tr>
<td>Liposomal amikacin for inhalation (LAI)</td>
<td>Target 30S ribosome</td>
<td></td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>Enhance host defense</td>
<td></td>
</tr>
<tr>
<td>Gaseous nitric oxide (gNO)</td>
<td>Enhance host defense</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>Target 50S ribosome</td>
<td></td>
</tr>
</tbody>
</table>

Mechanism of action

- Inhibition of cell wall synthesis
- Inhibition of protein synthesis
- Inhibition of nucleic acid synthesis
- Other mechanisms

Drug Discovery Today, April 2018
MULTI-FACETED MANAGEMENT PRINCIPLES:
THE “ABCDEFG” PATHWAY AND SPECIFIC CHECKLIST

• Immune status & Rx thereof
• Triggers and Associated Confounders: Avoid Steroids /ICS if possible
• Environmental /”Eco check” Yes and No but never hurts
• Contribution of underlying disease and sift out symptoms & causes related to these co morbid states
• Evaluation of degree of infection and specific treatment plan including outlying patient expectations and agreement about cautious waiting
• Overarching: BRONCHIECTASIS & Management thereof
• Watch for progression and red alert danger signs
CASE #4

- CC: intermittent cough/fever

- 64 yo Asian M presents as a referral for history of NTM & Pseudomonas infection with progressive bronchiectasis. No overt pulmonary symptoms. No dyspnea. **Intermittent cough** and **fever**. Unintentional **weight loss** of 5 lbs.

- PMHx: Immunoglobulin deficiency (low IgM, IgG4); Bronchiectasis (Dx 2002); Pulmonary MAC + M. Kansasii (s/p tx with RIPE x 14 mos 2014)

- Social Hx: 5pk/yrs (quit 4yrs ago)

- Meds: monthly IVIG
CASE #4

- **Pulmonary Function Test:**
 - FEV1/FVC = 64
 - FEV1 = 2.60 (93%)
 - TLC = 116%, RV = 116%
 - DLCO = 103%
 - Mild obstruction.

- **Microbiology:**
 - 11/2014 x 2: smear 2+; M. kansasii
 - 5/2017 (BAL): 2+; M. abscessus
 - 9/2017 x 2: smear (-); Group IV RGM
 - 11/2017 = smear (-); M. abscessus (>50 CFU)
 - 12/2017 = smear (-); M. abscessus (>50 CFU)
CASE #4

- **DIAGNOSIS:** Nodular bronchiectasis disease due to M. abscessus (prior MAC, m. kansasii)

- **Treatment Course:**
 - 3 month course of DAILY IV Amikacin / Imipenem / Azithromycin
 - Pulmonary toileting: Vest/Acapella/CPT
 - Monthly IVIG
 - To begin NEW regimen: Clofazimine / Linezolid / Azithromycin

- **Challenges:**
 - **Variable + DELAYED** identification & susceptibility reporting
 - Intensive regimen requiring IV therapy
 - Polymicrobial infections
 - **Recurrence vs relapse vs reinfection??**
CASE #4

• CC: intermittent cough/fever

• 64 yo Asian M ex smoker, presents as a referral for history of NTM & Pseudomonas infection with progressive bronchiectasis. No overt pulmonary symptoms. No dyspnea. **Intermittent cough** and **fever**. Unintentional **weight loss** of 5 lbs.

• PMHx: **Immunoglobulin deficiency (low IgM, IgG4) on monthly IVIG**; Bronchiectasis (Dx 2002); Multiple NTMs; Pulmonary MAC + M. Kansasii (s/p tx x 14 mos 2014)

Microbiology:

- 11/2014 x 2: smear 2+; M. kansasii
- 5/2017 (BAL): 2+; **M. abscessus**
- 9/2017 x 2: smear (-); Group IV RGM
- 11/2017 = smear (-); M. abscessus (>50 CFU)
- 12/2017 = smear (-); M. abscessus (>50 CFU)
CASE #4

• DIAGNOSIS: Nodular bronchiectatic disease due to M. abscessus (prior MAC, m. kansasii)

• Treatment Course:
 • 3 month course of DAILY IV Amikacin / Imipenem / Azithromycin
 • Pulmonary toileting: Vest/Acapella/CPT
 • Monthly IVIG
 • To begin NEW regimen: Clofazimine / Linezolid / Azithromycin (did not tolerate Linezolid)

• Challenges:
 • Variable + DELAYED identification & susceptibility reporting
 • Intensive regimen requiring IV therapy
 • Polymicrobial infections
 • Recurrence vs relapse vs reinfection???

• Action item: Modified treatment / Burden of disease? What next?
MULTIDISCIPLINARY MANAGEMENT APPROACH 1

• **Laboratory**
 - Speciation / colony count / Susceptibility testing

• **Nutritional support** Watch weight loss

• **Respiratory therapy**
 - Education/Goals/Expectation/Practical implementation
 - Airway clearance techniques (Nebulizer / PEP devices / Postural drainage)

• **Psychological support**
 - Patient outreach / Caregiver support
 - Support groups
MULTIDISCIPLINARY MANAGEMENT APPROACH 2

• **Specific therapy / phasic** ID/PULM OPTIONS
 - Surveillance
 - Suppressive treatment
 - Regular GBT
 - Inhaled AG
 - Regular with Inhaled
 - Intensive with inhaled
 - Intensive with IV
 - **SURGERY**

• **Underlying non-pulmonary/pulmonary disease**
 - Autoimmune: Co-mgmt with Immunologist/ Rheumatologist
 - Chronic rhinitis / sinusitis: Referral to ENT
 - GERD/Esophageal motility d/o: Referral to GI
 - Bronchiectasis/ IPF/COPD/Sarcoidosis/TB/Pulm
IN SUMMARY…

• Pulmonary disease due to NTM is **increasing in prevalence** worldwide, particularly among the elderly

• NTM is **ubiquitous in the environment with important geographic predilections or “hot spots”**

• For NTM disease to progress it requires a **complex interplay between host susceptibility, inoculum size/frequency and mycobacterial evasion techniques**

• Diagnosis of NTM disease is complex and management requires **communication and coordination between pulmonologists/ID specialists, radiologists and microbiologists and PATIENTS with set goals and expectations. Awareness of “Red flag alert points”**

• NTM causes various forms of pulmonary disease (i.e. nodular, bronchiectatic, cavitary) in different settings and requiring different management approaches

• Management of co-morbid conditions and associated pulmonary diagnosis and contributing/associated TRIGGERS (Immune state, naso-sinusitis/GERD/Aspiration/Environmental/Constitutional)

• Treatment options remain limited and are encumbered by long, ill-tolerated multi-drug regimens. With logistical challenges. **Engagement of patients/caregivers/ Goals of Rx / Limitations/ Outcomes well understood**

• **THUS : NEED FOR COORDINATED EFFORTS/ REGISTRIES* / STUDIES/PARTNERSHIPS**

• Thank you. Juzar Ali with *NL/JA LSUHSC program