# NTM Pulmonary Disease in non-HIV : Spectrum and Challenges in Management

# The usual and the unusual

**JA Nov 7 2018** 

Juzar Ali MD, FRCP(C), FCCP LSU Health Sciences Center - Alumni Klein Professor of Medicine Section Pulmonary/Critical Care & Allergy/Immunology <u>Director LSUHSC - Wetmore TB/ NTM Program</u> University Medical Center - NTM (Non-Tuberculosis Mycobacterial) Disease Clinic



School of Medicine Department of Medicine Section of Pulmonary/Critical Care & Allergy/Immunology

www.lsudocs.com www.lsuhsc.edu http://www.medschool.lsuhsc.edu/tb/ http://ntm.lsuhsc.edu INTRODUCTION & ACKNOWLEDGEMENT Dr. Nicole Lapinel Vareldzis Assistant Professor, Section of Pulm/CC/AI LSUHSC Co-Director LSUHSC-Wetmore TB/ NTM\_Program

TEAM MEMBERS Dr. AZ, JG, BASIC SCIENCE / LAB TEAM LD, MS, MV (RESEARCH COORDINATORS)



# DISCLOSURES

- Consultant / Speaker's Forum : Oxford Immunotec
- Consultant / Advisory Board / Speaker : INSMED
- Study PI /Co-PI: INSMED 212/312 (Inhaled Liposomal Amikacin for refractory MAC) now FDA approved as ARIKAYCE
- Study PI / Co-PI: INSMED Willow Study (Non-CF Bronchiectasis)
- Acknowledgment & Thanks : joint preparation Dr. Nicole Lapinel

### CASE 1

A 52-year old Caucasian active woman sought medical attention due to chronic cough. Physical exam was unremarkable. Sputum culture revealed light growth with few colonies of *Mycobacterium avium* complex (MAC). Repeat sputum cultures (1 of 2) later again revealed a few colonies of MAC. The patient was treated symptomatically and followed clinically by serial sputum test (s) and radiographic evaluation. No specific therapy for MAC was initiated and the patient did well



# Case 1 continued

- Remained asymptomatic except symptoms of allergic rhinitis and mild GERD
- Infrequent cough
- Repeat CT scan one year later revealed minimal increase in TiB pattern right ML and LUL nodule. "PCP said you may have MAC Lung Disease"
- Repeat Sputum : negative for AFB on culture
- Patient asked : what does this all mean ?

# Case 1 : Discussion/Action item

- NTM/ MAC Circus. All NTM are created equal (NL: Our program)
- Reassurance / No Specific Antibiotic Rx
- Risk factors
- Short-term /Long term prognosis
- Worse case scenarios
- .....

# Worldwide NTM Distribution (Respiratory)



Hoefsloot W, van Ingen J, Andrejak C, et al. Eur Respir J. 2013;42(6):1604-1613.

# NTM Pulmonary Disease in the United States



*Figure 1.* Prevalence of pulmonary nontuberculous mycobacteria cases among a sample of U.S. Medicare Part B enrollees aged 65 and older, 1997 to 2007. NTM = nontuberculous mycobacteria.

#### TABLE 1. SUMMARY OF ALL SIGNIFICANT CLUSTERS IDENTIFIED BY SATSCAN OF PULMONARY NONTUBERCULOUS MYCOBACTERIAL DISEASE AMONG U.S. MEDICARE BENEFICIARIES 65 YEARS OF AGE AND OLDER

| Cluster Type | Centroid County and State | No. of Counties (Radius, km) | Relative Risk | P Value  |
|--------------|---------------------------|------------------------------|---------------|----------|
| High risk    | Highlands, FL             | 24 (159.4)                   | 1.9           | < 0.0001 |
| 9750         | Santa Barbara, CA         | 18 (344.5)                   | 2.0           | < 0.0001 |
|              | Montgomery, PA            | 5 (42.2)                     | 2.2           | 0.0001   |
|              | New York, NY              | 1 (0)                        | 2.7           | 0.002    |
|              | Milwaukee, WI             | 1 (0)                        | 3.6           | < 0.0001 |
|              | Kalawao, HI               | 3 (114.8)                    | 3.7           | < 0.0001 |
|              | Plaquemines, LA           | 3 (70.2)                     | 6.5           | < 0.0001 |
| Low risk     | Washington, RI            | 16 (106.7)                   | 0.5           | 0.02     |
|              | losco, MI                 | 93 (351.4)                   | 0.4           | < 0.0001 |
|              | Roane, WV                 | 208 (268.5)                  | 0.4           | < 0.0001 |
|              | Polk, MN                  | 247 (689.7)                  | 0.4           | < 0.0001 |
|              | Cayuga, NY                | 95 (289.0)                   | 0.3           | < 0.0001 |

7 significant HIGH-risk clusters

- Southern Coastal Parishes identified within the cluster in Louisiana:
  - Plaquemines
  - Jefferson
  - St. Bernard
- Previous nationwide study on NTM in CF patients:
  - Orleans Parish = highest NTM prevalence among 21 sites



Figure 1. Significant clusters of counties identified by SaTScan as being at either high or low risk for pulmonary nontuberculous mycobacterial (PNTM) disease among U.S. Medicare beneficiaries 65 years of age and older. \*\*Lung disease due to NTM occurs commonly in structural lung disease, such as chronic obstructive pulmonary disease (COPD), bronchiectasis, CF, pneumoconiosis, prior TB, pulmonary alveolar proteinosis, and esophageal motility disorders

\*\*Abnormal CF genotypes, CFTR Gene mutation and \_1-antitrypsin (AAT) phenotypes may predispose some patients to NTM infection

\*\*NTM lung disease also occurs in women without clearly recognized predisposing factors There is also an association between bronchiectasis, nodular pulmonary NTM infections and a particular body habitus, predominantly in postmenopausal women (e.g., pectus excavatum, scoliosis, mitral valve prolapse) "A mean MAC machine in the thin and lean"

#### \*\*Bronchiectasis and NTM infection,

usually MAC, often coexist, making causality difficult to determine. These patients may carry multiple MAC strains over time, suggesting either polyclonal infection or recurrent infection with distinct strains). It is unclear whether this problem is due to local abnormalities (e.g., bronchiectasis) or to immune defects

Am J Respir CC M 178; 1066-1074 , 2008 NHLBI

### RESULT / SEQUELAE LEADING TO THE MANY FACES OF NTM PULM DISEASE

- Resultant Granuloma formation
- Release of cytolytic and cytotoxic enzymes to form either a cavity, necrotic nodules Resulting in PRIMARY BRONCHIECTASIS / F/C disease

or F/N disease with traction like cylindrical bronchiectasis

Add to the mix the underlying structural disease:

Type 3-4 Sarcoid/ IPF / COPD /Old TB With its anatomical distortion and secondary bronchiectasis







## CASE 2

- Chronic cough /repeated Bronchitis/ Very active otherwise
- Diagnosis: classic "Lady Windermere Syndrome"
- Recommended Treatment:
  - Rifampin / Ethambutol / Azithromycin three times weekly
  - Albuterol nebulizer 2-3x daily for airway clearance
  - Rhinitis: Flonase/Antihistamine
  - ► GERD: H2B/PPI
- Challenges:
- Establish cause of the start of this process : Sustained symptoms : ? Chronic / fatigue ?
  - Patient complained of nausea and diarrhea on days she would take her meds preventing her from leaving the house
    - DISCUSSION

# Discussion & ACTION PLAN Case 2

- Re-establish Goals and expectations
- Role of ACT
- Discuss Alternatives if no Rx
- Identify Red Flags/Danger points
- Step ladder escalation of therapy
- Modify time of Administration

.....

References: ATS guidelines/Expert Opinion/ Clinical Experience

# Chronic cough in a non smoker with a normal CXR

- Upper airway syndrome
- Hyperreactive airways post viral syndrome
- Cough Variant Asthma
- ▶ GERD with aspiration
- Drugs/ACE

- ► Early HF
- Early IPF
- CTD
- Sjogren's

plus .....one more

### Common CLINICAL challenges RELATED TO BACKGROUND GUIDELINE BASED ANTIMYCOBACTERIAL THERAPY

- Who to treat?
- How long to treat?
- How to convey the goals and seek patient partnership and engagement
- Establish outcome parameters
- Distinguish symptoms and radiology of NTM and underlying diseases and problems
- Which regimen is ideal?
  - Drug intolerance
  - Drug side effects
  - Drug-drug interactions
- How do patients afford their lengthy/complicated medication regimen?
- Are susceptibility data reliable?

### UNDER THE CLOUD OF INCIPIENT OR OVERT Bronchiectasis: PRINCIPLES OF Management

- GOALS
  - Reduce symptoms
  - Maintain lung function
  - Prevent exacerbations
  - Watch for red alerts monitoring BSI scores etc
- ► TREATMENT OPTIONS
  - Antibiotic therapy
  - Airway Clearance / Mucolytics
  - Anti-inflammatory agents with caution
  - Respiratory conditioning / EXERCISE PROGRAM
  - Surgery in selected cases (localized)

# Bronchiectasis Severity Index (BSI)

| Severity criteria                              | 0 points             | 1 point                                 | 2 points  | 3 points                                       | 4 points | 5 points | 6 points |
|------------------------------------------------|----------------------|-----------------------------------------|-----------|------------------------------------------------|----------|----------|----------|
| Age                                            | <50                  |                                         | 50-69     | -                                              | 70-79    | -        | 80+      |
| BMI kg/m2                                      | >18.5                |                                         | <18.5     | -                                              | -        | -        | -        |
| FEV1 % predicted                               | >80%                 | 50-80%                                  | 30-49%    | <30%                                           | -        | -        | -        |
| Hospital admissions in<br>the past 2 years     | No                   |                                         |           |                                                |          | Yes      |          |
| Exacerbation<br>frequency in last 12<br>months | 0-2                  |                                         | 3 or more |                                                |          |          |          |
| MRC dyspneascore                               | 1-3                  |                                         | 4         | 5                                              |          |          |          |
| Colonization status                            | Not colonized        | Chronic<br>colonization                 |           | <mark>P.</mark><br>aeruginosa coloni<br>zation |          |          |          |
| Radio logical severity                         | <3 lobes<br>involved | 3 or more<br>lobes or cystic<br>changes |           |                                                |          |          |          |

#### Interpretation:

- 0-4: Mild bronchiectasis
  - 1 year outcome: <2.8% mortality rate; <3.4% hospitalization rate</p>
  - 4 year outcome: <5.3% mortality rate; <9.2% hospitalization rate</p>
- 5-8: Moderate bronchiectasis
  - 1 year outcome: 0.8-4.8% mortality rate; 1-7.2% hospitalization rate
  - 4 year outcome: 4-11.3% mortality rate; 9.9-19.4% hospitalization rate
- 9+: Severe bronchiectasis
  - 1 year outcome: 7.6-10.5% mortality rate; 52.6% hospitalization rate
  - 4 year outcome: 9.9-29.2% mortality rate; 41.2-80.4% hospitalization rate

### INFECTION, INSULT PLUS IMPAIRED HOST\*



#### Impaired host

- 1. Defect in host defense\*\*
- 2. Defect in clearance
- 3. Defect in airflow (OAD)

#### Host response

- 1. Unopposed Neutrophilic elastase and Neutrophilic serine proteinases activity\*
- 2. Oxygen intermediates
- 3. Inflammatory cytokines

Blocked by ATAT Ed by inhib

In Non CF : CFTR variants with single mutations Association with Vit D deficiency

#### At an anatomic level

inflammation /edema/ulceration/neovascularization Irreversible bronchiolar dilatation and tissue destruction At the cytokine level

Increased mucus secretions Inhibition of mucociliary clearance

# Management of non-CF Bronchiectasis



Am J Respir Crit Care Med 2013 188, 647-656.

# Airway clearance

### Options

- Traditional CPT/postural drainage
- Oscillatory positive expiratory pressure (PEP) (i.e. Aerobika, Acapella)
- High frequency chest wall oscillation (The VEST)
- Autogenic drainage
- Active cycle breathing with huff coughs





# Airway Clearance - Inhaled Therapy

- Mucolytic agents and Airway Hydration:
  - Nebulized hypertonic saline
    - Recommended for CF
    - Cochrane review: No firm conclusions for use in non-CF bronchiectasis; unlikely to have benefit over isotonic saline in patients with milder disease.
  - Nebulized Mannitol: available evidence does not suggest benefit (CI with underlying asthma)
  - Acetylcysteine: no well-designed studies in non-CF (no clear benefit in CF even)
  - **Dornase alpha (DNAase):** NOT effective in non-CF, potentially harmful
- Systemic hydration: no evidence that hydration beyond euvolemia provides benefit

#### BRONCHIECTASIS

# . The paradox of Cough In NTM Bronchiectasis . Is cough good or a bad? ACT: Efficacy Indications **Contra-indications** Sustained Adherence

### Case #3



57 yo Caucasian F, never smoker with nonproductive cough intermittently for "a few years" - worse in Spring/Fall. Had episode of scant hemoptysis, spontaneously resolved, but prompted bronchoscopy for further evaluation. Cough somewhat more productive of clear/white sputum since bronch. No shortness of breath. Some postnasal drip. No fever, chills, night sweats, weight loss. No established pulm history but recalls repeated episodes of bronchitis in early adulthood. Hobbies : gardener

# Case #3

#### Pulmonary Function Test

- FEV1/FVC = 72
- ▶ FEV1 = 2.06 (80%)
- ▶ FEF25-75% = 1.46 (60%)
- ► TLC = 104%, RV = 123%
- ▶ DLCO = 69%
- **No obstruction, gas trapping with mildly reduced DLCO.**
- Microbiology: BALAFB smear 1+, Culture = MAC; all other micro and cytology negative NOTE : Dx by Bronch

## CASE # 3

Recommended Treatment by Specialist :

Rifabutin / Ethambutol / Azithromycin THREE times weekly

#### Challenges:

Adverse rxn to Rifabutin: High fever, N/V/D, 5lb weight loss, arthralgia/myalgias, debilitating fatigue

Discussion

# Discussion & Action Plan Case 3

- Re-evaluate Goals and Expectations
- Importance of quantification of infection/colony count
- Sputum vs Bronchoscopy
- Significance of hx of hemoptysis
- Consideration of RBT vs RIF
- Daily vs Thrice weekly
- No RIF Regimen
- Addition of IV aminoglycoside
- Addition of Inhaled AG
- Any other considerations
- References :PICORI Trial

# Case 4

- 60 year old woman with Hx Severe COPD / chronic cough and frequent mild hemoptysis
- Sputum cultures x 4 all positive for moderate growth of Mycobacterium Avium Complex



# Case 4 continued

- Started treatment with Daily GBT with IV Amikacin 3 months ago
- ► Tolerating Rx well
- Being treated for COPD with ICS /LAMA /LABA and B2 prn
- Rx with BS antibiotics and steroid rescue when having acute exacerbation
- To date doing well

### Discussion

# **Discussion and Action Plan Case 4**

- Stay the course
- Steroids use
- ► USE of ICS ???
- Hemoptysis "Red flag"
- Duration of IV AG
- Role of inhaled later
- Surgery?
- Any other considerations

# CASE # 5

- 63 yo F with progressive shortness of breath, fatigue and unintentional weight loss of 15 lbs. Also complains of intermittent nonproductive cough.
- PMHx: Sarcoidosis (stage V), Pneumothorax, Chronic hypoxemic resp failure, DM, pancreatic& adrenal insufficiency, HTN, Pulm MAC (tx 1990s)
- Social Hx: 10pk/yrs (quit 30yrs ago)
- Meds: Methotrexate, Hydrocortisone, Insulin



# CASE # 5

- Pulmonary Function Test
  - ▶ FEV1/FVC = .53
  - ► FEV1 = 0.55 (26%)
  - ▶ FEF25-75% = 0.26 (13%)
  - ► TLC = 59%, RV = 91%
  - DLCO = 19%
  - Very severe obstruction with moderate restrictive lung disease and severely reduced DLCO.
- Microbiology
  - 11/2013: Smear (-), Group IV RGM
  - 7/2017: Smear (-), M. abscessus
  - 8/2017: Smear 1+, MAC
  - 9/2/17: Smear 2+, M. abscessus (1 CFU) + ESBL Klebsiella pneumonia
  - 9/3/17: Smear 2+, M. abscessus (<10 CFU)</p>
  - ▶ 9/23/17: Smear (-), negative
  - 5/2018: Smear 2+, M. abscessus (10-50 CFU)

### Case # 5

- DIAGNOSIS: Fibrocavitary disease due to MAC + M. Abscessus
- Treatment Course & Challenges
  - ▶ IV Ertapenem for ESBL Kleb
  - Started on DAILY Rifampin / Ethambutol / Azithromycin + IV Amikacin/
  - IV Amikacin discontinued after 2 weeks
  - REA held after 4 months
- Challenges
  - Cellulitis d/t PICC line
  - Weight loss down 25lbs from baseline
  - Tinnitus; Vision changes -
  - Cholecystitis req surgical intervention

# **Discussion and Action Items Case 5**

► <u>?????</u>

- Limited options/
- Second line drugs? /
- Suppressive Rx ?
- Addressing Fatigue
- Addressing weight loss

Factors contributing to the poor response to therapy

included

1. cavitary disease, 2. previous treatment for MAC lung disease, 3 and a history of chronic obstructive lung disease or bronchiectasis And 4 macrolide resistance,

# Pulmonary Rehab / Exercise

- Eight weeks of exercise (30min moderate intensity, 3x per wk.) improves exercise capacity, dyspnea, fatigue (Newall et al 2008, Mandal et al 2012, Lee et al 2014, Lee et al 2017)
- When combined with airway clearance therapy, improvement in coughrelated quality of life is achieved (Mandal et al 2002).
- Increased time to first exacerbation and reduces number of exacerbations at 12 months.



|                                     | Control<br>n = 25 | Exercise<br>n = 30 | p value |
|-------------------------------------|-------------------|--------------------|---------|
| Exacerbations                       | 2 (1 – 3)         | 1 (0 – 2)          | 0.012   |
| Exacerbations requiring antibiotics | 2 (0 – 4)         | 1 (0 – 2)          | 0.061   |
| Exacerbation days                   | 10 (2 – 13)       | 7 (3 – 11)         | 0.23    |
| Exacerbation days with antibiotics  | 11 (2 – 15)       | 7 (2 – 13)         | 0.36    |

Respiratory Research 2014, 15:44

### Case # 6



- CC: intermittent cough/fever
- 64 yo Asian M presents as a referral for history of NTM & Pseudomonas infection with progressive bronchiectasis. Intermittent cough and fever. Unintentional weight loss of 5 lbs.
- PMHx: Documented Immunoglobulin deficiency; Bronchiectasis (Dx 2002); Multiple NTMs in the past; Pulmonary MAC + M. Kansasii (s/p tx x 14 mos 2014)
- Social Hx: 5pk/yrs (quit 4yrs ago)
- Meds: monthly IVIG

### CASE # 6

### Pulmonary Function Test:

- ► FEV1/FVC = 64
- ► FEV1 = 2.60 (93%)
- ► TLC = 116%, RV = 116%
- ▶ DLCO = 103%
- Mild obstruction.
- Microbiology: Earlier : MAC
  - 11/2014 x 2: smear 2+; M. kansasii
  - 5/2017 (BAL): 2+; M. abscessus
  - 9/2017 x 2: smear (-); Group IV RGM
  - 11/2017 = smear (-); M. abscessus (>50 CFU)
  - 12/2017 = smear (-); M. abscessus (>50 CFU)

### CASE # 6

DIAGNOSIS: Nodular bronchiectatic disease due to M. abscessus (prior MAC, m. kansasii)

### Treatment Course:

- > 3 month course of DAILY IV Amikacin / Imipenem / Azithromycin
- ACT: Vest/Acapella/CPT
- Monthly IVIG
- To begin NEW regimen: Clofazimine / Linezolid / Azithromycin ( did not tolerate Linezolid )

## Discussion / Action item Case 6

### Challenges:

- Importance and types of immunoglobulin deficiencies
- Variable + DELAYED identification & susceptibility reporting
- Intensive regimen requiring IV therapy
- Polymicrobial infections/ "NTM Migration"
- Recurrence vs relapse vs reinfection???
- Action item : Modified treatment / Burden of disease ? What next ?

Looks like a duck, walks like a duck, but may not be a duck always



Case 7

A 76- year old Caucasian woman, smoker, with past history of TB, treated completely in the 1960's, was seen with chronic cough, fatigue and minimal shortness of breath. Pulmonary function tests revealed moderate obstructive airways dysfunction. Sputum tests revealed moderate growth of *Mycobacterium avium* complex on repeated examinations Offered GBT with IV amikacin ; Patient refused and wanted minimal treatment and was placed on daily treatment with clarithromycin and ethambutol with bronchodilators.



## Discussion / Action item Case 7

- Approach Right or wrong?
- Cavitary disease and GBT
- Role of Suppressive therapy and pros and cons

•••••

## Case 7 follow up

She remained stable on this regimen for 4 years of her follow up without any acute exacerbations of NTM related issues. Serial sputum cultures intermittently revealed light growth of *Mycobacterium avium* complex ;She passed away at a later date due to Respiratory failure/COPD

#### Case 8

A 50-year old man with severe COPD and bronchiectasis was on long term treatment for *Mycobacterium avium* complex pulmonary disease (MAC-PD) initially and later for macrolide-resistant MAC (MRMAC). He was admitted in moderately severe respiratory distress with fever and increasing cough. In addition to the multiple drugs used for the treatment of this patient though the course of his illness, therapeutic trials of thalidomide, interferon gamma and high dose mefloquine were given. Due to progressive bilateral disease and poor pulmonary function, surgery was not considered. (The patient later died of respiratory failure and overwhelming infection.



Case 9

A 42-year old man with history of treated TB in 1980 developed progressive fibro-cavitary MAC infection in 1993. His treatment with ethambutol, rifabutin and clarithromycin was erratic due to non-adherence. No IV or inhaled aminoglycoside was He was admitted to the hospital with increasing cough, night sweats and a ten pound weight loss. No culture and sensitivity data were available. With the history of erratic treatment, His pulmonary function tests revealed a FEV1 of 1.4 L and a split perfusion pulmonary scan showed one percent perfusion of the right lung and 99% of blood flow to the left lung. presumed macrolide resistance and unilateral fibro-cavitary right sided disease, he was evaluated for surgical excision and pneumonectomy. The patient had a complicated operative and perioperative course and died of respiratory failure after a month long stay in the ICU.

## SPECIFIC NTM management limitations

- Methods of identification (accuracy, timeliness, availability)
- Not a reportable disease
- Mycobacterial evasion / inefficient treatment options:
  - Intrinsic resistance
    - Macrophage barrier (intracellular) to Rx
    - Hydrophobicity of NTM with drugs being hydrophilic in nature( e.g. more hydrophobic drugs - rifabutin as opposed to rifampin)
    - Cell wall associated permeability barrier (e.g. M. Chelonei ; hence ethambutol in combination a better choice)
    - Caseum growth & nonreplicating state of persistence
    - Mucus growth (e.g. M. abscessus undergo phenotypic switch in mucus niche)
    - Biofilm growth (NTM in biofilms are ten times less susceptible)
  - Poor correlation between in vitro and therapeutic efficacy
  - Multi strain sero-variance (e.g. AIDS patients; subjects with nodular/bronchiectatic disease pattern AND NTM migration)
  - Adaptive resistance due to continual exposure

### The SMART Microbe Why survival and immune evasion?\*

- Biofilm formation, Cell wall characteristics blocking vacuolar acidification
- Inhibition of phagosome-lysosome fusion
- Anaerobic intracellular environment
- Induction of NTM related genes that enhance replication
- Inhibition of the host macrophage function and lymphocyte proliferation

## The GPL\* difference : MICROBE

- Produced by NTM and not MTB
- Impacts colony morphology
- Smooth variants with nsGPL are cleared but rough variants without nsGPL evolve and persists
- The severity and persistence of disease depends upon the transition between smooth and rough variants .The variation and presence or absence of nsGPL and ssGPL dictates intracellular survival
- Serovariable oligosaccharides contribute to species specific pathogenesis.
- ► This coupled with biofilm formation dictates Immune evasion and thus

survival of NTM

### The WEAK HOST Why survival and immune evasion? 2

\* Induction of macrophage apoptosis by down regulation of Bcl-2 gene

\* Absence of or sluggishness of the T helper lymphocyte or NK innate immunity

\* Defective clearance \*

## treatment options GBT and/ or

### THE NEW KID ON THE BLOCK **DRUG - DELIVERY - ACTION** DATA SUPPORT PRECAUTIONS

#### LCB01-0371

- Target 50S ribosome
- For M. abs

#### PIPD1

- Target MmpL3
- For M. abs

#### Indole-2-carboxamides

- Target MmpL3
- For M. abs

#### Thiacetazone derivatives

- Target FAS-II dehydratase
- For M. avium and M. abs

#### Clofazimine\*

- Target NDH-2
- For M. abs

#### Tedizolid\*

- Target 50S ribosome - For NTM

#### **Bedaquiline\***

- Target ATP synthase - For NTM

#### β-lactams with avibactam\*

- Target penicilin-binding protein
- For M. abs and M. avium

#### **Rifabutin\***

- Target RNA polymerase - For M. abs

Drug Discovery Today, April 2018

#### Clofazimine

- Target NDH-2
- For M. avium PD

#### Liposomal amikacin for inhalation (LAI)

- Target 30S ribosome
- For M. abs PD

#### Nitric oxide

- Enhance host defense
- Produce reactive nitrogen intermediates
- For CF patients with NTM (especially M. abs)

#### Gaseous nitric oxide (gNO)<sup>a</sup>

- Enhance host defense
- Produce reactive nitrogen intermediates For NTM

#### Thiolanox<sup>®</sup> from

novoteris

#### Liposomal amikacin for inhalation (LAI)

- Target 30S ribosome
- For refractory MAC PD

#### **Clarithromycin vs** azithromycin

- Target 50S ribosome
- For MAC PD

Clarithromycin vs moxifloxacin

- Target DNA gyrase - For M. xenopi PD

#### Linezolid

- Target 50S ribosome
- For NTM disease

- Mechanism of action
  - Inhibition of cell wall synthesis
  - Inhibition of protein synthesis
  - Inhibition of nucleic acid synthesis
  - Other mechanisms

Drug Discovery Today

# - From AIT therapeutics

## Surgery

- When to consider:
  - Localized disease and failure of treatment
  - Recurrent hemoptysis
- Should be done in specialized centers.
- 171 patients (observational, Univ of Colorado)
  - > 212 surgical procedures with 0% mortality
  - Overall complication rate of 8.9% with persistent air leak most common (5.6%)
- 790 Chinese patients followed for mean of 4 yrs., 1.1% mortality at 30d, 75% asymptomatic/improved
- > 134 USA patients followed mean 6 yrs., 2% mortality, 89% improved

### Ann Thorac Surg 2012;93:1033-1039



## **Other Therapies**

- Role of LABA/LAMA/ICS ?
- NSAIDs: insufficient data to support use
- Nutritional supplementation: requires further study; randomized 30 well-nourished patients in 12wk pulm rehab to high-protein (hydroxy-beta-methyl-butyrate) supplement, this group showed improvement in some parameters of strength/physical function (QOL-B)
- Statins: preliminary data do not support a role unless patient has another indication for therapy
- Immunizations: limited guidelines, but at least pneumococcal + influenza
- Sinus Surgery: 161 patients with rhinosinusitis, nonrandomized endoscopic vs meds alone, improved symptoms, numerical scoring & reduced exacerbations in surgery group BUT WHEN?

### Multidisciplinary management approach

- Specific therapy /phasic protocol ID/PULM/INFUSION CENTERS
  - Surveillance
  - Suppressive treatment
  - Regular GBT
  - Inhaled AG
  - Regular with Inhaled
  - Intensive with inhaled
  - Intensive with IV
  - Under evaluation

#### Underlying non-pulmonary/pulmonary disease

- Autoimmune: Co-mgmt with Immunologist/ Rheumatologist (RGM)
- Chronic rhinitis / sinusitis: Referral to ENT (MAC)
- GERD/Esophageal motility d/o: Referral to GI (MG MA)
- Bronchiectasis/ IPF/COPD/Sarcoidosis/TB/Lung Cancer Pulm (ALL)

#### The Multidisciplinary Team



social program dietitian worker coordinator

#### Required Team Members

**Recommended Team Members** 

psychologist

research

coordinator

physical

therapist



pharmacist

### Multidisciplinary management approach

### Laboratory

- Speciation / colony count / Susceptibility testing
- Nutritional support Watch weight loss
- Respiratory therapy
  - Education/Goals/Expectation/Practical implementation
  - Airway clearance techniques (Nebulizer / PEP devices / Percussive vests / Postural drainage)

### Psychological support

- Patient outreach / Caregiver support
- Support groups

#### The Multidisciplinary Team

CYSTIC FIBROSIS FOUNDATION respiratory physical research physician nurse coordinator therapist therapist socia program psychologist pharmacist dietitian worke coordinator

**Required Team Members** 

**Recommended Team Members** 

## Multi-faceted Management principles CHECKLIST

- Immune status & Rx thereof
- Triggers and Associated Confounders : Avoid Steroids / ICS if possible
- Environmental / "Eco check" Yes and No but never hurts
- Contribution of underlying disease and sift out symptoms & causes related to these co morbid states/secondary infection: ABCDEFG
- Evaluation of degree of infection and specific treatment plan including cautious waiting
- Overarching: BRONCHIECTASIS & Management thereof recognizing that nonproductive cough is the most difficult to manage.
- Watch for progression and red alert danger signs (Increasing Fatigue/ Respiratory Cachexia Weight loss/Hemoptysis)

### In summary...

- Pulmonary disease due to NTM is increasing in prevalence worldwide, particularly among the elderly
- NTM is ubiquitous in the environment with important geographic predilections or "hot spots"
- For NTM disease to progress it requires a complex interplay between host susceptibility, inoculum size/frequency and mycobacterial evasion techniques
- Diagnosis of NTM disease is complex and requires communication and coordination between pulmonologists/ID specialists, radiologists and microbiologists / Auxiliary teams and PATIENTS with set goals and expectations.
- Awareness of "Red flag Alert Points" (related to disease, underlying conditions and therapy)
- NTM causes various forms of pulmonary disease (i.e. nodular, bronchiectatic, cavitary) inn different settings and requiring different management approaches
- Management of co-morbid conditions and associated pulmonary diagnosis and contributing/associated TRIGGERS (Immune state, naso-sinusitis /GERD/Aspiration/Environmental /Constitutional)
- Treatment options remains limited and are encumbered by long, ill-tolerated multi-drug regimens. Engagement of patients/caregivers/ Goals of Rx / Limitations/ Outcomes well understood
- **THUS : NEED FOR COORDINATED EFFORTS/ REGISTRIES\* / STUDIES/PARTNERSHIPS**

Thank you. Juzar Ali with \*NL/JA prgm