

In Silico Allosteric Network Predicts Variation in Response for Drugs Against Human Kinesin-5: Are All Anticancer Agents Created Equal?

Rachel Ramos¹, Micquel Downs¹, Heather Soileau¹, Jessica Richard¹, Victoria Dauphin¹,

Joseph Chaney², Edward Wojcik¹, and Sunyoung Kim¹

¹Dept. Biochemistry & Molecular Biology, LSU Health Sciences Center and ²Dept. Chemistry, Xavier University of Louisiana

INTRODUCTION

Kinesin-5 is an essential motor protein for mitosis in eukaryotes.

Kinesin-5, also known as Eg5, is a plus-end directed motor protein. It contributes to the anti-parallel sliding of microtubules during mitosis [1]. Overexpression of Eg5 has been seen in pancreatic, lung, prostrate, breast, and bladder tumors [2]. Aberrant kinesin-5 activity results in apoptosis. It couples chemical work (ATP hydrolysis) with mechanical work to move along cytoskeletal tracks. As the active and microtubule (MT) binding sites are on opposite faces of the kinesin motor domain, mechanotransduction is allosteric.

Human kinesin-5 is a target for anticancer therapies; small-molecule screens uncovered Eg5 inhibitors, such as monastrol and STC, that targeted only kinesin-5 and none of the other members of the kinesin superfamily.

These anticancer therapies are allosteric inhibitors that bind within the same allosteric binding pocket within loop5. However, the inhibitors bind to different residues and therefore have a different statistical coupling analysis (SCA) network. SCA identifies co-evolution within a polypeptide chain by monitoring amino acid distributions across a sequence alignment via a series of perturbation experiments [3]. SCA has been experimentally validated in several protein families [for example, (4-9)].

The goal of this project is to determine which energetically-linked SCA residues are essential for inhibitor potency against this mitotic kinesin target.

The SCA algorithm will predict which residues that are distant from the inhibitor binding site can alter potency of an inhibitor. Such drug response prediction will be tested by variation in potency (half-maximum inhibitory concentration or IC₅₀) with two different inhibitors that bind to the same site of Eg5.

> Table 2. Residues tested are shown in color in the Eg5 crystal structure (PDB 3HQD). Asterisk denotes

> > drug site

SCA

SCA

SCA

SCA

mutation found in the human population.

L5 drua sit

1.5 A133D

α6

L263F 67

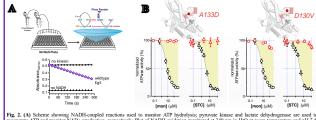
D279G α4

V298G α4

We selected a subset of SCA and non-SCA residues to measure the allosteric effects of STC and monastrol

We selected a subset of SCA and non-SCA residues in various areas of the motor domain including the active and microtubule-binding sites to measure the effects of the inhibitors (Fig. 2).

We introduced five different mutations into wildtype Eg5 plasmid. We considered the mutations to be properly folded if expression and purification profiles were substantial and comparable to wildtype.


Using a bacterial expression system, the Eg5 mutations and wildtype were expressed, harvested, and then purified to >95% in a single chromatography step.

Mutations of L5 loop residues result in

resistance to both inhibitors

Residues in the L5 loop upon mutation result in cancer cell resistance to targeted small molecule inhibition. Notably, these mutations do not prevent drug binding, just allosteric communication through the motor. We measures the ATP hydrolysis rate using a NADH-coupled assay (Fig. 3A)

Dose response curves of A133D and D130V confirmed that these L5 loop mutants have higher IC50 values for monastrol and STC (Fig. 3B).

e ATP and monitor NAD+ production, respectively. Plot of NADH oxidation mo red at 340 nm in H2O at room ten are and pH 7.4 Reactions shown are wildtype Eg 5 kinesin (gray with purple outline), with no NADH control, and with no motor control. B) Dose response WT (black), A133D (red, left), and D130V (red, right) in the presence of increasing concentrations of monastrol (circles) and STC (triangles)

Perturbation of the SCA network by mutation altered response to only one of the two inhibitors

We tested whether disrupting the SCA communication pathway would alter the concentration of the drug that decreases the maximal rates of kinesin catalysis by 50% (ICso) would be altered. Mutation of these kinesin allostery network residues resulted in a ten-fold lower IC50 for STC, indicating that STC is a more potent inhibitor in three mutant proteins.

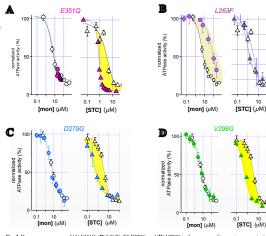


Fig. 3. Dose response curves of (A) E351Q, (B) L263F, (C) D279G, and (D) V298G in the presence of increasing concentrations of monastrol (mon) and STC. Dark yellow shading highlights that these beta-7 mutant that has a higher IC80 value for monastrol. Bright yellow shading highlights that these alpha-4 and alpha-6 helices mutants have lower IC30 values for STC

Mutation of SCA residues at the microtubule-binding site gave rise to hypersensitivity to only one inhibitor, STC, whereas mutation at the motor core gives resistance to monastrol.

SCA residues in the microtubule-binding site mark an STC-exclusive allosteric pathway and may delineate the mechanism of STC-specific inhibition of Eg5 depolymerization activity [10].

SIGNIFICANCE

Tailoring drugs to patients is one of the ultimate goals of precision medicine.

Patient-to-patient variability in drug response is a primary challenge facing development and use of medicines. Use of molecular signatures for targeted genes has been useful in precision oncology [2].

Recent efforts to understanding such variability involves genotyping coupled with systematic measurement of dose-response across a large bank of cell lines [11].

Computational algorithms have advanced predicting drug response by integrating genetic features and chemical structure information.

Our hypothesis is that a kinesin residues identified by statistical coupling analysis (SCA) can predict inhibitor response to Eg5, without the need of empirical measurement.

Of the 56 SCA residues identified in kinesin mechanotransduction, 8 have known missense polymorphisms and 14 have synonymous polymorphisms in the human population (Table 1) [12]. In contrast, 6 residues in the L5 loop have missense mutations in the humans (data not shown).

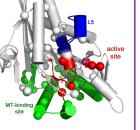
Table 1. Missense and synonymous Eg5 polymorphisms found in human population. The Genome Aggregation Database (gnomAD) catalogue of human genetic variation was used to evaluate 15,708 whole genomes and 125,748 exomes; this totals 141,456 unrelated individuals who are part of various population genetic and complex disease-specific studies.

SCA residue	mutation type	2º structure	motor domain site	SCA residue	mutation type	2º structure	motor domain site
I319M	missense	α5	MT-binding	P27	synonymous	N-4	active site
R327C	missense	L13		E32	synonymous	α0	
R327H	missense	L13		Y82	synonymous	α1	
1332V	missense	β8		N98	synonymous	β3	
S348N	missense	α6	MT-binding	L160	synonymous	β4	central β- sheet
E351Q	missense	α6	MT-binding	S237	synonymous	β6	central β- sheet
K357N	missense	α6	MT-binding	L261	synonymous	β7	central β- sheet
1359V	missense		necklinker	R281	synonymous	α4	MT-binding
				A285	synonymous	α4	MT-binding
				L293	synonymous	α4	MT-binding
				H308	synonymous	L12	
				T349	synonymous	α6	MT-binding
				E351	synonymous	α6	MT-binding
				A356	synonymous	α6	MT-binding

CONCLUSIONS

Kinesin SCA network defines residue positions that give rise to resistance or hypersensitivity to allosteric inhibitors of the human Eg5 mitotic kinesin.

Although both monastrol and STC bind to the same L5 site, they do not have identical allosteric pathways of communication.


SCA network residues D279, V298 and E351 in the alpha-4 and alpha-6 helices are hypersensitive to only STC. These data demonstrate that an in silico map of mechanotransduction can be used to predict an individual's response to an anticancer therapeutic.

ACKNOWLEDGEMENTS

I'd like to extend a special thank you to Drs. Fern Tsien, Allison Augustus-Wallace, Hamilton Farris, and Chindo Hicks for affording me this opportunity to conduct research. We are grateful to Drs. Rebecca Buckley and Anne Tufton for their intellectual support and guidance. This work was supported by the National Science Foundation DBI-2051440 Research Experiences for Undergraduates (REU) Program and the National Institutes of Health R01GM09768

REFERENCES

 Kim, ED et al. (2010) J Biol Chem 285:18650;
Baudino, TA et al. (2015) Curr Drug Discov 12:3
Lockless SW and Ranganathan R (1999) Science 286:295;
Suel GM et al. (2003) Nat Struct Biol 10:59;
Hatley ME et al. (2003) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2003) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2003) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2013) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2013) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2013) Proc Natl Acad Sci USA 100:14445;
Shuhman AI et al. (2004) Cell 116:417;
Hatley ME et al. (2014) Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2014) Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;
Hatley ME et al. (2015) Curr Display Cell 116:417;</l [4] Just Owe Lu, (2005) And Shine Food 19:55, [5] Finaley And Et al. (2005) Find Hull Act Ost Ost 100:1197, [6] Shinema Food 19:55, [6] Finaley And Et al. (2007) Cell 147:156, [6] Shine Food 19:55, [6] Finaley And Et al. (2007) Cell 147:156, [10] Kim, CD et al. (2019) Sci Rep. 9:19000 [11] Fallahi-Sichami M et al. (2013) Murer Chem Biol 9, 708-714 [12] Karczewskii KJ et al. (2020) Nature Ski, 434

The 56 coupled residues detected by SCA are ed as Ca spheres on a Kinesin-5 crystal structure (PDB 3HQD). Three functionally important sites within the motor domain are colored and labeled.

Fig. 1. The 5