Furuncular Myiasis

Gregory D. Sloop, MD and Fred A. Lopez, MD, FACP, Series Editor

A case of furuncular myiasis is reported. The life cycle of the parasite, differential diagnosis, host response, and therapy are briefly discussed.

A 48-year-old man experienced a two week history of localized inflammation that was located to the right of his umbilicus. Three to four episodes of "pin-prick" sensations were noted at the site, but no pain was appreciated. A clear brown fluid was noted to ooze from the site. The patient initially thought that the lesion was a pimple or boil. He had visited Ambergris Caye, San Pedro, Belize on vacation five weeks earlier. Earlier on the day of presentation, he applied lateral pressure to the sides of the lesion and expressed some white tissue and ultimately extracted a foreign body (Figure 1). When he noted movement of the object, he experienced substantial anxiety, put the organism in a zip-lock bag, and presented to his physician. He was subsequently referred to a surgeon who performed a minor incision and drainage.

The foreign body measured 2.0 x 0.7 cm. and was identified as larva of the species Dermatobia hominis (i.e., the human botfly). Diagnostic features included the presence of spines in rows, the incubation period, and history of travel to Ambergris Caye. Microscopic examination revealed a sinus tract partially lined by stratified squamous epithelium. Surrounding tissue showed acute and chronic inflammation, fibrosis, and microscopic foreign material associated with a giant-cell reaction.

DISCUSSION

Furuncular myiasis is the term given to infestation of living subcutaneous tissue by fly larva. Primary infection occurs when larvae penetrate intact skin and is referred to as furuncular because the appearance of the resultant lesion mimics a staphylococcal-associated boil. Adult D. hominis lives only 9 to 12 days, and does not feed. Its mouthparts are vestigial, and have evolved into a sensory apparatus. The female attaches her eggs to a second, biting insect, often a mosquito or other fly. When this vector bites exposed mammalian skin, body heat causes the eggs to hatch, and then the larvae burrow into the host. The larva then feeds and grows for four to twelve
weeks, breathing through a “punctum” or hole in the skin. When mature, the parasite exits the hole, drops to the ground, undergoes metamorphosis, and emerges as a short-lived adult.

D. hominis is endemic from Mexico to South America. Treatment involves extraction of the larva, usually by some means of occluding the punctum (i.e., application of petroleum jelly) or applying lateral pressure to the larval cavity, essentially forcing it through the punctum. In endemic areas, each village typically has one or two inhabitants who are expert in squeezing the parasites out. If conservative management fails, the parasite can be removed using a venom extractor or surgery. Although myiasis is still an exotic disease, it is the fourth most common travel-associated skin disease, and accounts for 5-10% of skin lesions in a Tropical Disease Unit.

This case of myiasis is atypical because the skin lesion was not painful. Typically these infestations cause severe pain sometimes described as a “screw drilled into flesh.” Pain is intermittent and presumably due to larval feeding or movement. The clinical differential diagnosis is usually a sebaceous cyst or pyoderma. In 20% of cases, more than one larva is present.

In the experience of the author and others, infestation by parasites visible to the unaided eye, such as maggots or pinworms, causes emotional impact far in excess of the medical consequences. Only a single case of fatal myiasis has been reported, when an infant developed a ventriculocutaneous fistula as a complication of a larval cavity which overlaid a fontanel.

Based on the observation that dead larvae are “immediately and violently rejected by the host,” it is thought that bot fly larvae actively evade the host immune system. In an animal model, immunization resulted in stronger humoral and cell-mediated immunity than infection. Pertinently, neutrophils do not adhere to the larval cuticle until it is molted. A clear space can be seen around larvae in photomicrographs, suggesting the presence of a capsule, while neutrophils are in intimate contact with the molted cuticle or exuvia.

ACKNOWLEDGEMENTS

The author would like to thank Daniel Haun, MT, for skillfully photographing the larva. Thanks to Kenneth Fallon, M.D., for his insight into this condition.

REFERENCES

Dr. Sloop was Associate Professor of Pathology at Louisiana State University School of Medicine in New Orleans at the time that the manuscript was accepted.

The Clinical Case of the Month is a regular educational feature presented by the Louisiana State University Department of Medicine in New Orleans. Medical Students, residents, postdoctoral fellows, and faculty collaborate in the preparation of these discussions.
CME QUESTIONS

To earn CME credit, read the preceding CME article and complete the registration, evaluation, and answer form on page 45. Mail or fax the registration, evaluation, and answer form to the Educational and Research Foundation. Answers must be postmarked or faxed prior to February 28, 2007. Participants must attain a minimum score of 75% to receive credit.

For each question, choose the one answer that is most correct.

1. True or false: Infestation by Dermatobia hominis is usually associated with severe pain.

2. True or false: Infestation with Dermatobia hominis has a fatality rate of 10-30%.

3. The differential diagnosis of Dermatobia hominis infestation includes:
 a) basal cell carcinoma
 b) sebaceous cyst
 c) cutaneous T-cell lymphoma
 d) malignant melanoma

4. The typical case of infestation by Dermatobia hominis involves:
 a) Multiple organisms
 b) A discharge from the punctum
 c) Travel history to the Gulf Coast
 d) Continuous pain

CALL FOR MANUSCRIPTS

The Journal of the Louisiana State Medical Society is continually seeking high-quality manuscripts. Take advantage of this opportunity to have your work included in this peer-reviewed publication.

See the “Information for Authors” section at the front of this issue for criteria and how to submit an article for publication or visit www.lsms.org/pubs.htm.